Pilkington浮法玻璃生产介绍-PPT文档课件.ppt
A member of NSG Group1Application of Inorganic Chemistry in IndustryFlat Glass and Coatings On GlassDrTroyManningAdvancedTechnologist,On-lineCoatingsPilkingtonEuropeanTechnicalCentreHallLaneLathomUKtroy.manningpilkington2OutlineOverviewofFlatGlassindustryandNSG/PilkingtonFlatGlassmanufactureFloatGlassProcessCoatingtechnologywithintheglassindustryChemicalVapourDepositionExamplesofonlinecoatingapplicationsLowEmissivity/SolarControlSelfCleaningSummarySuggestedReading3GlobalFlatGlassMarketGlobalMarket37milliontonnes(4.4billionsq.m)BuildingProducts33mtonnes-Automotive4mtonnesOfwhich24million=highqualityfloatglass3million=sheet2million=rolled8million=lowerqualityfloat(mostlyChina)GlobalValueAtprimarymanufacturelevel15billionAtprocessedlevel50billion4NSGandPilkingtoncombinedAglobalglassleaderthepureplayinFlatGlassCombinedannualsalesc.4billionEqualtoAsahiGlassinscale,mostprofitableinFlatGlassOwnership/interestsin46floatlines6.4milliontonnesannualoutputWidenedAutomotivecustomerbase36,000employeesworldwideManufacturingoperationsin26countriesSalesin130+countries5ManufactureofFlatGlassFourmainmethodsPlateGlass(1688)moltenglasspouredontoaflatbed,spread,cooledandpolishedSheetGlass(1905)continuoussheetofglassdrawnfromtankofmoltenglassRolledGlass(1920)moltenglasspouredontototworollerstoachieveaneventhickness,makingpolishingeasier.Usedtomakepatternedandwiredglass.FloatGlass(1959)moltenglasspouredontobedofmoltentinanddrawnoffincontinuousribbon.Giveshighqualityflatglasswitheventhicknessandfirepolishfinish.320float-glasslinesworldwide6Melting furnaceFloat bathCooling lehrContinuos ribbon of glassCross cuttersLarge plate lift-off devicesSmall plate lift-off devicesRaw material feedTheFloat-GlassProcessOperates non-stop for 10-15 years6000 km/year0.4 mm-25 mm thick,up to 3 m wide7TheFloatGlassProcess8Rawmaterials9MeltingFurnace10FloatBath11FloatGlassPlant12TheFloat-GlassProcessFine-grainedingredients,closelycontrolledforquality,aremixedtomakebatch,whichflowsasablanketontomoltenglassat1500Cinthemelter.Thefurnacecontains2000tonnesofmoltenglass.Afterabout50hours,glassfromthemelterflowsgentlyoverarefractoryspoutontothemirror-likesurfaceofmoltentin,startingat1100Candleavingthefloatbathasasolidribbonat600C.Despitethetranquillitywithwhichfloatglassisformed,considerablestressesaredevelopedintheribbonasitcools.13RawMaterialsOxide%in glass Raw material sourceSiO272.2SandNa2O13.4Soda Ash(Na2CO3)CaO8.4Limestone(CaCO3)MgO4.0Dolomite(MgCO3.CaCO3)Al2O31.0Impurity in sand,Feldspar or CalumiteFe2O30.11Impurity in sand or Rouge(Fe2O3)SO30.20Sodium sulphateC0.00Anthracite14RawmaterialsSiO2Very durable,BUT high melting point(1700C)!+Na2OMelts at a lower temperature,BUT dissolves in water!+CaOMore durable,BUT will not form in bath without crystallisation+MgOGlass stays as a super-cooled liquid in bath,no crystallisation+Al2O3Adds durability+Fe2O3Adds required level of green colour for customer15ChemistryofGlassImportant glassmaking chemistry:basic reactionsNa2CO3 +SiO2 1500C Na2SiO3 +CO2Na2SiO3 +x SiO2 Na2SO4 (Na2O)(SiO2)(x+1)Digestion16CompositionofGlass17StructureofGlassRandom network of SiO4-tetrahedral units.Na-O enter Si-O network according to valency Network FormersCa and Mg Network Modifiers make structure more complex to prevent crystallisation 18Body-tintedGlassIonResulting Colour of GlassFerrous(Fe2+)BlueFerric(Fe3+)YellowFe2+Fe3+GreenSelenium(SeO2)BronzeCobalt(Co2+)Grey/BlueNickel(Ni2+)Grey19CIELa*b*colourspace20CIELa*b*colourspace21FunctionsofaWindowLightinhomes,officesLightoutshops,museumdisplaysHeatinheatingdominatedclimatesHeatoutcoolingdominatedclimatesCanchangepropertiesofglassbyapplyingcoatingstothesurface22Makingawindowfunctional-coatingsAwidevarietyofcoatingtechnologiesareutilisedbytheglassindustrySprayPyrolysisPowderSprayChemical Vapour DepositionSputterCoatingThermalEvaporationCoatingsSolGelCoatingsTheseareappliedOnLinei.e.astheglassisproducedonthefloatlineOffLinei.e.coatingnotnecessarilyproducedatthesamelocation23VariationsofCVDAtmosphericPressureAPCVDLowPressure-LPCVDAerosolAssisted-AACVDMetalorganicMOCVDCombustion/FlameCCVDHotWire/FilamentHWCVD/HFCVDPlasmaEnhanced-PECVDLaserAssistedLACVDMicrowaveAssistedMWCVDAtomicLayerDepositionALD24ChemicalVapourDeposition25ChemicalVapourDepositionMaingasflowregionGasPhaseReactionsSurfaceDiffusionDesorptionofFilmPrecursorByProductsDiffusiontosurface26ChemicalVapourDepositionAnimation kindly supplied by Dr.Warren Cross,University of Nottingham27CVDprocessesandparametersProcessParametersTransportPrecursorsGasphasereactionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentration,precursors,carriergasDiffusionPressure,temperature,flowconditions,boundarylayerthickness,gasphaseconcentrationAdsorptionTemperature,gasphaseconcentration,numberandnatureofsitesSurfacereactionTemperature,natureofsurfaceDesorptionofby-productsTemperature,pressure,natureofsurfaceDiffusiontolatticesiteTemperature,surfacemobility,numberofvacantsites28CVDPrecursorPropertiesVolatilegas,liquid,lowmeltingpointsolid,sublimablesolidPureStableundertransportReact/DecomposecleanlytogivedesiredcoatingminimisecontaminantsCanbesinglesourceordual/multi-source29CVDPrecursorsSingleSourcepyrolysis(thermaldecomposition)e.gTi(OC2H5)4TiO2+4C2H4+2H2O(400C)Oxidatione.gSiH4(g)+O2(g)SiO2(s)+2H2(g)Reductione.g.WF6(g)+3H2(g)W(s)+6HF(g)Dualsourcee.g.TiCl4(g)+4EtOH(g)TiO2(s)+4HCl(g)+2EtOEt(g)30DualSourceandSingleSourcePrecursorsFilmDual SourceSingle SourceGaAsGaCl3+AsH3Me2Ga(AsH2)TiNTiCl4+NH3Ti(NMe2)4WSiWCl6+SiH4W(SiR)4TiO2TiCl4+H2OTi(OiPr)4CdSeCdMe2+H2SeCd(SeR)231TransportofPrecursorsBubblerforliquidsandlowmeltingsolidsDirectLiquidInjectionsyringeandsyringedriverforliquidsandsolutionsSublimationforsolidshotgaspassedoverheatedprecursorAerosolofprecursorsolutions32EffectofTemperatureonGrowthRateIndependent of temperature33FlowconditionsLaminar Flow regimeTurbulent Flow Regime34ReynoldsNumberDimensionlessnumberdescribingflowconditionsr=r=Mass density related to concn and partial pressureu=average velocitym=viscosityL=relevant length,related to reactor dimensionsIf Re 1000 fully turbulent flowReality is between the two extremes35DimensionlessNumbersReducesthenumberofparametersthatdescribeasystemMakesiteasiertodeterminerelationshipsexperimentallyForexample:DragForceonaSphereVariables:Force=f(velocity,diameter,viscosity,density)Canbereducedto2“dimensionlessgroups”:Dragcoefficient(CD)andReynoldsnumber(Re)36DimensionlessNumbersLaminar flow regimeTurbulent flow regimeExperimental values of CD for spheres in fluid flows at various Re37BoundaryLayergasvelocityFrictional forces against reactor walls decrease gas velocity The boundary layer thickness can be estimated from:38BoundaryLayer-temperatureContact with hot surfaces increases temperature39BoundaryLayerprecursorconcentrationDepletion of precursor decreases gas phase concentration40NucleationandGrowthVan der Waals type adsorption of precursor to substratePrecursors then diffuse across surfacePrecursors diffuse across boundary layer to surfaceAnd can be desorbed back into main gas flowOr can find low energy binding sites to coalesce into filmMain Gas Flow41NucleationandGrowthSubstrate TemperatureGrowth RateSurface DiffusionCrystallinityLowHighSlowrelativefluxofprecursorsAmorphousnocrystallinestructureHighLowFastrelativetofluxofprecursorsEpitaxialreplicatessubstratestructureIntermediateIntermediateIntermediatePolycrystalline42GrowthMechanisms(b)Frank-van der MerweLayer growth(c)Stranski-KastanovMixed layered and island growth(a)Volmer-WeberIsland growth43ThinFilmAnalysisManytechniquesareusedtocharacterisethinfilmsExamplesincludeXRDcrystallinity,phaseXRRlayerthickness,layerroughnessSEM/EDX/WDXmorphology,thickness,compositionRamanphase,bondingFTIRphase,bondingXPScomposition,depthprofiling,dopingSIMScomposition,depthprofiling,dopingAFMroughness,surfacemorphologyTEMcrystallinestructure,crystaldefectsAnalysisoffunctionalproperties44CVDonGlassForon-linecoatingofglasswerequire:Highgrowthratesrequiredthicknessin100nm/spossibleLowprecursorefficiency10%SiCxOy(70 nm)SnO2:F(350 nm)GlassSiH4+C2H4+CO2SiCxOy+H2O+otherby-productsUsedascoloursuppressionandbarrierlayer57LowEmissivityCoatingGenerallybasedonSnO2:F(TransparentConductiveOxide)SiCOunderlayerusedascoloursuppressant58Low-EandSolarControlCoatings59Self-CleaningGlassTwomechanisms:SuperhydrophilicityPhotocatalyticdegradationoforganicmatter.TiO2coating60SuperhydrophilicityOxygen vacanciesTiO-TiOTiHTiTiTiH+TiOTiOTiTiOTiOTiHHH2O(OH-,H+)Water dropletsUniform water filmUV illumination timeContact angleooooooodarkUV61PhotocatalyticActivityUltrabandgapirradiationofTiO2GenerationofelectronholeinvalencebandHolemigratestothesurfaceandresultsinoxidationoforganicmaterialValenceBandConductanceBandOxidationReductionAA+BB-h+hn62Semi-conductorPhotocatalysisA.Mills,S Le Hunte,J.Photochem.Photobiol A,2019,108,1-35.63CVDofActivTMSiO2(30 nm)TiO2(17 nm)GlassSiH4+O2+C2H4 SiO2+by-productsUsed as barrier layer to prevent diffusion of Na ions into TiO2 layerTiCl4+EtOAc TiO2+HCl+organic by-productsLaminar Flow regimeReasonable growth rates and precursor efficiency64ActivTM65ActivTM66ActivTM67Superhydrophilicity15 mins UV Exposure30 mins UV Exposure45 mins UV ExposureBefore UV Exposure68PhotocatalyticEffect UV-AbsorptionO2-OH*Organic SoilHH2 2O+COO+CO2 2GlassBarrier LayerTiO2-Layer69PhotocatalyticEffectThephotoactivityofthecoatingcanbemeasuredbymonitoringthedecompositionofastandardcontaminantAthinfilmofstearicacid(n-octadecanoicacid,200)isappliedfromamethanolsolutionontothecoatingStearicacidusedasatypicalorganiccontaminantFTIR(Fouriertransforminfra-redspectroscopy)usedtodetectC-HstretchofstearicacidC-HabsorptionintensitymeasuredaftervaryingUVexposure70StearicAcidDecompositionC-HAbsorptionZeroUVexposureC-HAbsorption60minsUVexposureUV 0.77W/m2 340nm71PilkingtonActivTM72SummaryScaleoftheGlobalFlatGlassIndustryManufacturingFlatGlassFloatGlassProcessCoatingGlassChemicalVapourDepositionExamplesofcommercialglazingcoatingspreparedbyCVD73RecommendedReadingD.W.SheelandM.E.PembleAtmospheric Pressure CVD Coatings on Glass,ICCG42019 cvdtechnologies.co.uk/CVD%20on%20Glass.pdfM.L.Hitchman,K.F.JensenChemical Vapor DepositionAcademicPress,1993W.S.Rees,CVD of Non-metals,VCH,Weinheim,2019M.OhringThe Materials Science of Thin Films,AcademicPress,2019pilkington74First in Glass75谢谢你的阅读v知识就是财富v丰富你的人生