欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    直线与抛物线的位置关系复习课件.ppt

    • 资源ID:69344592       资源大小:950.50KB        全文页数:26页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    直线与抛物线的位置关系复习课件.ppt

    直线与抛物线的直线与抛物线的位置关系复习位置关系复习X1A复习回顾复习回顾直线与圆、椭圆、双曲线的位置关系直线与圆、椭圆、双曲线的位置关系2A直线与圆、椭圆、双曲线的位置关系的直线与圆、椭圆、双曲线的位置关系的判断判断方法:方法:1、对于封闭图形(圆、椭圆),可根据几何对于封闭图形(圆、椭圆),可根据几何 图形直接判断图形直接判断2、直线与圆直线与圆锥曲线的公锥曲线的公共点的个数共点的个数 Ax+By+c=0f(x,y)=0(圆锥曲线圆锥曲线方程方程)解的个数解的个数几几何何法法代代数数法法复习回顾复习回顾3A探究:直线与抛物线的位置关系探究:直线与抛物线的位置关系xyO1、相离;、相离;2、相切;、相切;3、相交(、相交(一个交点,一个交点,两个交点两个交点)思考:只有一个交点一定是相切吗?思考:只有一个交点一定是相切吗?4A题型一:交点个数问题题型一:交点个数问题5A这时,直线这时,直线 与抛物线只有一个公共点与抛物线只有一个公共点.6A由 即解得 于是,当 且 时,方程()有2个解,从而,方程组()有两个解,这时,直线 与抛物线有2个公共点.由 即由 即解得 于是,当 且 时,方程()有2个解,从而,方程组()有两个解,这时,直线 与抛物线有2个公共点.由 即7A解得 于是,当 时,方程没有实数解,从而方程组()没有解,这时,直线 与抛物线没有公共点.综上可得:当 时,直线 与抛物线只有一个公共点;当 时,直线 与抛物线有两个公共点;当 时,直线 与抛物线没有公共点.你能通过作图你能通过作图验证这些结论验证这些结论吗?吗?8A几何画板演示几何画板演示9A判断直线与抛物线位置关系的操作程序:判断直线与抛物线位置关系的操作程序:把直线方程代入抛物线方程把直线方程代入抛物线方程得到一元一次方程得到一元一次方程得到一元二次方程得到一元二次方程直线与抛物线的直线与抛物线的对称轴平行对称轴平行相交(一个交点)相交(一个交点)计计 算算 判判 别别 式式0=00相交相交相切相切相离相离总结:总结:10A 点评:本题用了分类讨论的方法点评:本题用了分类讨论的方法.若先用数若先用数形结合,找出符合条件的直线的条数,就不会形结合,找出符合条件的直线的条数,就不会造成漏解。造成漏解。11A题型二:弦长问题题型二:弦长问题12AxyOFABBA例例2.斜率为斜率为1的直线的直线L经过抛物线经过抛物线 的焦点的焦点F,且与抛物线相交于且与抛物线相交于A,B两点两点,求线段求线段AB的长的长.y2=4x解法二解法二:由已知得抛物线的焦点由已知得抛物线的焦点为为F(1,0),所以直线所以直线AB的方程为的方程为y=x-113A解法解法 三三例例2.斜率为斜率为1的直线的直线L经过抛物线经过抛物线 的焦点的焦点F,且与抛物线相交于且与抛物线相交于A,B两点两点,求线段求线段AB的长的长.y2=4x14A方法方法2:焦点弦的弦长公式:焦点弦的弦长公式小结:求解抛物线与小结:求解抛物线与过焦点的直线过焦点的直线相交的弦长相交的弦长方法方法1:利用弦长公式:利用弦长公式 xyO FABBA15A练习:练习:(1)抛物线的抛物线的通径长通径长是是 .(2)过抛物线)过抛物线 的焦点的焦点,作倾斜角为作倾斜角为的直线的直线,则被抛物线截得的弦长为则被抛物线截得的弦长为_ y2=8x2.已知抛物线已知抛物线y2=8x81 1、过抛物线过抛物线x2=4y的焦点作直线交于的焦点作直线交于A(x1,y1),B(x2,y2)两点两点,如果如果y1+y2=5,求求|AB|的值的值16A例例3 3、在抛物线在抛物线y y2 2=64x=64x上求一点,使它到直线:上求一点,使它到直线:4x+3y+46=04x+3y+46=0的距离最短,并求此距离的距离最短,并求此距离.F题型三:最值问题题型三:最值问题17A.F思考:思考:18A例例4、已知抛物线已知抛物线C:y24x,设直线与抛物线,设直线与抛物线两交点为两交点为A、B,且线段,且线段AB中点为中点为M(2,1),),求直线求直线l的方程的方程.说明:说明:中点弦问题中点弦问题的解决方法:的解决方法:联立直线方程与曲线方程,利用韦达定理求解联立直线方程与曲线方程,利用韦达定理求解点差法点差法题型四:中点弦问题题型四:中点弦问题19A例例4、已知抛物线、已知抛物线C:y24x,设直线与抛物线两交点为,设直线与抛物线两交点为A、B,且线段,且线段AB中点为中点为M(2,1),求直线),求直线l的方程的方程.20A例例4、已知抛物线、已知抛物线C:y24x,设直线与抛物线两交点为,设直线与抛物线两交点为A、B,且线段,且线段AB中点为中点为M(2,1),求直线),求直线l的方程的方程.21A.F例例522A练习练习1:1:已知抛物线已知抛物线y=xy=x2 2,动弦动弦ABAB的长为的长为2 2,求,求ABAB中点纵坐标中点纵坐标的最小值。的最小值。FABM解:xoy23A解法二:xoyFABMCND练习练习1:1:已知抛物线已知抛物线y=xy=x2 2,动弦动弦ABAB的长为的长为2 2,求,求ABAB中点纵坐标中点纵坐标的最小值。的最小值。24A25A归纳总结归纳总结怎样求弦长?若弦过焦点,有什么简单怎样求弦长?若弦过焦点,有什么简单方法?方法?怎样判断直线与抛物线的位置关系?怎样判断直线与抛物线的位置关系?用什么方法求中点弦所在的直线方程?用什么方法求中点弦所在的直线方程?怎样求直线与抛物线的最小距离?怎样求直线与抛物线的最小距离?2、弦长:、弦长:3、中点弦:、中点弦:1、位置关系:、位置关系:4、最小距离:、最小距离:5.类比、数形结合、转化、分类讨论的思想。类比、数形结合、转化、分类讨论的思想。26A

    注意事项

    本文(直线与抛物线的位置关系复习课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开