2019届高三数学上学期第一次联考试题 文(含解析)(新版)新人教版.doc
-
资源ID:693679
资源大小:862.47KB
全文页数:11页
- 资源格式: DOC
下载积分:2金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019届高三数学上学期第一次联考试题 文(含解析)(新版)新人教版.doc
- 1 -20192019 学年高三第一次联考学年高三第一次联考数学(文科)数学(文科)1. 已知集合,则( )A. B. C. D. 【答案】C【解析】因为,故选 C.2. 若(为虚数单位) ,则复数( )A. B. C. D. 【答案】B【解析】由可得:,故选 B.3. 如图是某学校学生体重的频率分布直方图,已知图中从左到右的前 3 个小组的频率之比为 1:2:3,则第三小组的频率为( )A. 0.125 B. 0.25 C. 0.375 D. 0.5【答案】C【解析】试题分析:由直方图知前三组的频率之和为,所以第三小组的频率为,故选 C考点:频率分布直方图4. 若向量,则( )A. -36 B. 36 C. 12 D. -12【答案】D【解析】根据数量积定义知:,故选 D.- 2 -5. 已知等差数列的前 3 项依次为,前 项和为,且,则 的值为( )A. 9 B. 11 C. 10 D. 12【答案】C【解析】由成等差数列得:,解得,所以,所以,解得,故选 C.6. 如图所示,一个三棱锥的三视图是三个直角三角形(单位:) ,且该三棱锥的外接球的表面积为,则该三棱锥的体积为( )A. 5 B. 10 C. 15 D. 30【答案】B【解析】由三视图可知,该三棱锥的底面三角形两直角边长分别为 3,5,设该三棱锥的高为H,将该三棱锥补成长方体可知,该三棱锥的外接球的直径为,该三棱锥的外接球的表面积为,解得,所以该三棱锥的体积为,故选 B.7. 已知直线将圆所分成的两段圆弧的长度之比为 1:2,则实数( )A. B. C. D. 【答案】C【解析】由题意,劣弧所对的圆心角为 120°,半径为 2,圆心为,所以圆心到直线的距离为 1,所以圆心到直线的距离,所以,故选 C.8. 执行如图所示的程序框图,输出 的值为( )- 3 -A. 2 B. -1 C. 1 D. 0【答案】C【解析】执行程序,当,按照此规律,当执行完后,不满足条件,跳出循环,所以输出,故选 C.9. 已知等比数列的前 项和为,则 的值为 ( )A. B. C. D. 【答案】C【解析】因为,又,解得,故选 C.10. 在中,(如下图) ,若将绕直线旋转一周,则形成的旋转体的体积是( )A. B. C. D. 【答案】D【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以,所以旋转体的体积:.- 4 -故选:D11. 函数的图象可能为( )A. B. C. D. 【答案】D【解析】 由,所以函数是奇函数,所以函数的图象关于原点对称,故排除;当时,排除 B,故选 A.12. 已知函数,若函数在上的最小值为 ,则 的值为( )A. B. C. D. 【答案】A【解析】由题意,若,则,函数单调递增,所以,矛盾;若,函数在上递减,在上递增,所以,解得;若,函数是递增函数,所以,矛盾;若,函数单调递减,所以,解得,矛盾.综上,故选 A.- 5 -13. 已知函数,则_【答案】4【解析】由题意,故填 .14. 已知实数满足,则的最小值是_【答案】0【解析】作出可行域如图阴影部分,由得,平移直线,由平移可知当直线,当直线和 OA 重合时,直线的截距最大,此时 z 取得最小值为 0,即的最小值是 015. 定长为 4 的线段两端点在抛物线上移动,设点 为线段的中点,则点 到轴距离的最小值为_【答案】【解析】设,抛物线的交点为 F,抛物线的准线,所求的距离, (两边之和大于第三边且 M,N,F 三点共线时取等号) ,所以.答案为: .16. 若函数在 上存在单调递增区间,则实数 的取值范围为_【答案】- 6 -【解析】由题意,有解,即有解,令,当时,当时,所以,故只需.17. 在中,角的对边分别为,且(1)求的值;(2)若的周长为 5,求的面积【答案】 (1)故;(2)【解析】试题分析:(1)由已知及正余弦定理可求,又 0A,则可求的值(2)由周长求边长 c,根据面积公式计算可得.试题解析:1)由及正弦定理,得,又由余弦定理,得,故(2)若的周长为 5,又,所以故的面积为18. 经研究,城市公交车的数量太多容易造成资源浪费,太少又难以满足乘客需求.为此,某市公交公司从某站占的 40 名候车乘客中随机抽取 15 人,将他们的候车时间(单位:)作为样本分成 5 组如下表:组别侯车时间人数一2二6三2四2五3- 7 -(1)估计这 40 名乘客中侯车时间不少于 20 分钟的人数;(2)若从上表侯车时间不少于 10 分钟的 7 人中选 2 人作进一步的问卷调查,求抽到的两人侯车时间都不少于 20 分钟的概率【答案】 (1) ;(2) 【解析】试题分析:(1)根据 15 名乘客中候车时间少于 20 分钟频数和为 5,可估计这 40名乘客中候车时间少于 20 分钟的人数;(2)将两组乘客编号,进而列举出所有基本事件和抽到的两人恰好来自不同组的基本事件个数,代入古典概型概率公式可得答案试题解析:(1)侯车时间不少于 20 分钟的概率为,所以估计侯车时间不少于 20 分钟的人数为(2)将侯车时间在范围的 4 名乘客编号为;侯车时间在范围的 3 名乘车编号为从 7 人中任选两人包含以下 21 个基本事件:,其中抽到的两人侯车时间都不少于 20 分钟包含以下 3 个基本事件:,故所求概率为19. 如图,四棱锥中,底面是直角梯形,是正三角形, 是的中点(1)求证:;(2)判定是否平行于平面,请说明理由【答案】 (1)证明见解析;(2)证明见解析.- 8 -【解析】试题分析:(1)取 AD 中点 M,连接 CM、PM,推导出,从而平面,由此能证明(2)取 PA 的中点 F,连接 BF、FE,推导出四边形 BCEF 为平行四边形,从而 CEBF,由此能证明 CE平面 PAB试题解析:(1)取的中点为,连接,由于是正三角形,所以,又易知四边形是平行四边形,所以,所以,平面平面,又,故平面,又平面,故.(2)平行于平面,理由如下:取的中点为 ,连接可知,又,所以四边形为平行四边形,故.又平面平面,所以平面.20. 已知椭圆过点,椭圆 的左焦点为 ,右焦点为 ,点是椭圆 上位于 轴上方的动点,且,直线与直线分别交于两点(1)求椭圆 的方程及线段的长度的最小值;(2) 是椭圆 上一点,当线段的长度取得最小值时,求的面积的最大值- 9 -【答案】 (1);(2).【解析】试题分析:(I)由椭圆和抛物线y24x有共同的焦点,求出抛物线的焦点坐标,根据 a2=b2+c2,即可求得椭圆 C 的方程;()根据(I)写出点 A,B,设点 P 和直线 AP,BP 的方程,并且与直线 y=3 分联立,求出G,H 两点,根据两点间的距离公式,根据求函数的最值方法可求, 当平行于的直线与椭圆下方相切时,的面积取最大值,求此时三角形面积即可.试题解析:(1)由,得,所以,又椭圆过点,所以,解得,故椭圆 的方程为,设点,则由,得,即,则,由,得,所以线段的长度取得最小值.(2)由(1)可知,当的长度取得最小值时,将点代入,得,故此时点,则直线的方程为,此时,当平行于的直线与椭圆下方相切时,的面积取最大值,设直线,则由,得,则,所以,或(舍去) 由平行线间的距离公式,得此时点 到直线的距离.故,即的面积的最大值为.- 10 -21. 设函数(1)讨论函数的单调性;(2)若,求函数的最值【答案】 (1)详见解析;(2)详见解析.【解析】试题分析:(1)先求导,分类讨论即可求出函数的单调区间;(2)求导,根据导数和函数的最值得关系即可求出,注意分类讨论试题解析:(1),令,得,若,则恒成立,所以函数在上单调递增;若,则由,得;由,得,所以函数在上单调递增,在上单调递减;若,则由,得;由,得,所以函数在上单调递增,在上单调递减;若,则恒成立,所以函数在上单调递减.(2)若,当时,由(1)得,函数在上单调递增,在上单调递减,故时,函数有最大值,无最小值;当时,由(1)得,函数在上单调递增,在上单调递减,故时,函数有最小值,无最大值.22. 以平面直角坐标系的原点为极点, 轴正半轴为极轴且取相同的单位长度建立极坐标系已知点 的参数方程为(为参数) ,点 在曲线上(1)求在平面直角坐标系中点 的轨迹方程和曲线 的普通方程;(2)求的最大值【答案】 (1),曲线 的普通方程为;(2).- 11 -【解析】试题分析:(1)消参的普通方程,利用转化公式极坐标化普通方程;(2)数形结合,转化为线段上一点与圆上一点距离的最大值,注意利用垂线段最短及点与圆上点距离最大值的求法.试题解析:(1)由消去参数,得,又,故点 的轨迹方程是,即,故曲线 的普通方程为.(2)如图:由题意可得,点 的线段上,点 在圆上,圆的圆心到直线的距离,直线与圆相切,且切点为,易知线段上存在一点,则点与圆心 的连线,与圆的交点 满足取最大值.即当点 坐标为时,取最大值.,的最大值为.