欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    ((完整版))相似三角形的性质及判定知识点总结+经典题型总结(学生版)-推荐文档.pdf

    • 资源ID:69629857       资源大小:335.31KB        全文页数:16页
    • 资源格式: PDF        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ((完整版))相似三角形的性质及判定知识点总结+经典题型总结(学生版)-推荐文档.pdf

    Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211中考要求中考要求考试要求考试要求板块板块A 级要求B 级要求C 级要求相似三角形了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题知识点睛知识点睛一、相似的有关概念1相似形具有相同形状的图形叫做相似形相似形仅是形状相同,大小不一定相同相似图形之间的互相变换称为相似变换2相似图形的特性两个相似图形的对应边成比例,对应角相等3相似比两个相似图形的对应角相等,对应边成比例二、相似三角形的概念1相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形如图,与相似,记作,符号读作“相似于”ABCA B C ABCA B C ABCCBA2相似比相似三角形对应边的比叫做相似比全等三角形的相似比是 1“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”三、相似三角形的性质1相似三角形的对应角相等相似三角形的性质及判定相似三角形的性质及判定 Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211如图,与相似,则有ABCA B C AABBCC ,ABCCBA2相似三角形的对应边成比例与相似,则有(为相似比)ABCA B C ABBCACkA BB CA C k3相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比如图 1,与相似,是中边上的中线,是中边上的中ABCA B C AMABCBCA MA B C B C 线,则有(为相似比)ABBCACAMkA BB CA CA M kMMABCCBA图 1如图 2,与相似,是中边上的高线,是中边上的高线,ABCA B C AHABCBCA HA B C B C 则有(为相似比)ABBCACAHkA BB CA CA H kHHABCCBA图 2如图 3,与相似,是中的角平分线,是中的角ABCA B C ADABCBACA D A B C B A C 平分线,则有(为相似比)ABBCACADkA BB CA CA D kDDABCCBA图 34相似三角形周长的比等于相似比 Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211如图 4,与相似,则有(为相似比)应用比例的等比性质有ABCA B C ABBCACkA BB CA C kABBCACABBCACkA BB CA CA BB CA C ABCCBA图 45相似三角形面积的比等于相似比的平方如图 5,与相似,是中边上的高线,是中边上的高线,ABCA B C AHABCBCA HA B C B C 则有(为相似比)进而可得ABBCACAHkA BB CA CA H k21212ABCA B CBC AHSBCAHkSB CA HB CA H HHABCCBA图 5四、相似三角形的判定1平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似可简单说成:两角对应相等,两个三角形相似3如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似4如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似可简单地说成:三边对应成比例,两个三角形相似5如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似6直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”1横向定型法欲证,横向观察,比例式中的分子的两条线段是和,三个字母恰为的ABBCBEBFABBCABC,ABC Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211顶点;分母的两条线段是和,三个字母恰为的三个顶点因此只需证BEBFBEF,BEFABCEBF2纵向定型法欲证,纵向观察,比例式左边的比和中的三个字母恰为的顶点;右边ABDEBCEFABBCABC,ABC的比两条线段是和中的三个字母恰为的三个顶点因此只需DEEFDEF,DEF证ABCDEF3中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形这种方法就是等量代换法在证明比例式时,常用到中间比比例中项式的证明,通常涉及到与公共边有关的相似问题。这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解倒数式的证明,往往需要先进行变形,将等式的一边化为 1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之复合式的证明比较复杂通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明六、相似证明中常见辅助线的作法在相似的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论常见的等量代换包括等线代换、等比代换、等积代换等如图:平分交于,求证:ADBACBCDBDABDCAC证法一:过作,交的延长线于CCEADBAE,1E 23 ,12 3E ACAE,ADCEBDBABADCBEAC点评:做平行线构造成比例线段,利用了“A”型图的基本模型证法二;过作的平行线,交的延长线于BACADE,12E ABBE,BEACBDBEABDCACAC点评:做平行线构造成比例线段,利用了“X”型图的基本模型七、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题常用的面积法基本模型如下:如图:1212ABCACDBC AHSBCSCDCD AH321EDCABBACDE1 2图 1图“图 图”图HDCBA图 2图“图 图”图GHODCBA Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211如图:1212ABCBCDBC AHSAHAOSDGODBC DG如图:ABDABDAEDACEAEDACESSSABADAB ADSSSAEACAE AC八、相似证明中的基本模型IHGFEDCBAGFEDCBAEDCBAEDCBAEFDCBAFEDCBAODCBAODCBAHEDCBAEDCBAEDCBAODCBADCBDBACAEDCBADCBAGFEDCBAGFEDCBAGFEDCBADEFCBA图 3图“图 图”图CDEBA Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211HPMNFEDCBAGHGFEDCBAEFDCBAFEDCBA例题精讲例题精讲一、与三角形有关的相似问题【例 1】如图,在中,点在边上,若在增加一个条件就能使,则这ABCACABDACABCACB个条件可以是 CDBA【巩固】如图,、是的边、上的点,且,求证:.DEABCACABAD ACAE ABADEB EDCBA【巩固】如图,在中,于,于,的面积是面积的 4 倍,ABCADBCDCEABEABCBDE6AC 求的长.DEEDCBA【例 2】如图,中,点是内一点,使得,ABC60ABCPABCAPBBPCCPA ,则 86PAPC,PB Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211PCBA【巩固】如图,已知三个边长相等的正方形相邻并排,求EBFEBG HGFEDCBA【例 3】如图,已知中,与相交于,则的值为(ABC:1:3AE EB:2:1BC CD ADCEFAFEFFCFD)A.B.1 C.D.25232【巩固】在中,的延长线交的延长线于,求证:.ABCBDCEDEBCPAD BPAE CPPEDCBA【巩固】如图,、为边上的两点,且满足,一条平行于的直线分别交MNABCBCBMMNNCAC、和的延长线于点、和.ABAMANDEF求证:.3EFDEFNMEDCBAADEFCB Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211【例 4】如图,已知,若,求证:./ABEFCDABaCDbEFc111cabDCFEBA【巩固】如图,垂足分别为、,和相交于点,垂足为.ABBDCDBDBDACBDEEFBDF证明:.111ABCDEFFDCEAB【巩固】如图,已知,找出、之间的关系,并证明你的结论./ABEFCDABDSBEDSBCDSNMHDCFEBA【例 5】如图,在四边形中,与相交于点,直线 平行于,且与、ABCDACBDOlBDABDCBCAD及的延长线分别相交于点、和.求证:ACMNRSPPM PNPR PS Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211lSRPNMODCBA【巩固】已知,如图,四边形,两组对边延长后交于、,对角线,的延长线交ABCDEFBDEFAC于求证:EFGEGGF【考点】相似三角形的性质与判定【难度】5 星【题型】解答【关键词】【例 6】如图,中,若分别是的中点,则;ABCBCa11DE,ABAC,1112D Ea若分别是的中点,则;22DE、11D BE C、22132 24aD Eaa若分别是的中点,则;33DE、22D BE C、331 372 48D Eaaa若分别是的中点,则_.nnDE、-1-1nnD BE C、nnD E【例 7】如图,内有一点,过作各边的平行线,把分成三个三角形和三个平行四边形若ABCPPABC三个三角形的面积分别为,则的面积是 123SSS,1 12,ABCGFECDBAEnDnE3D3E2D2E1D1CBA Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211PS3S2S1IHGFEDCBA【例 8】如图,梯形的两条对角线与两底所围成的两个三角形的面积分别为,则梯形的面积是(ABCD22pq,)AB222 pq2pqCD22pqpq222222p qPqpq【巩固】如图,梯形中,两条对角线、相交于,若,那么ABCDADBCACBDO:1:9AODCOBSS :BOCDOCSSOABCD二、与平行四边形有关的相似问题【例 9】如图,已知平行四边形中,过点的直线顺次与、及的延长线相交于点、ABCDBACADCDEF,若,则的长是 G5BE 2EF FGEFGDCABq2p2OABCD Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211【巩固】如图,已知,求证:.DEAB2OAOC OEADBCDOECBA【例 10】如图,的对角线相交于点,在的延长线上任取一点,连接交于点,若ABCDAOABEOEBCF,求的值ABaADcBEb,BFOFEDCBAKOFEDCBA【巩固】如图:矩形的面积是 36,在边上分别取点,使得,且ABCDABAD,EF,3AEEB2DFAF与的交点为点,求的面积。DECFOFODKABCDEFOOFEDCBA三、与梯形有关的相似问题【例 11】已知:如图,在梯形中,是的中点,分别连接、,ABCD/ABCDMABACBDMDMC且与交于点,与交于.ACMDEDBMCF Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211(1)求证:/EFCD(2)若,,求的长.ABaCDbEFFEMDCBA【巩固】如图,在梯形中,分别是的中点,交于ABCDADBCADaBCbEF,ADBC,AFBE,交于,求的长 PCEDFQPQOQPBFCDEA【例 12】如图,已知梯形中,,(),ABCD/ADBC90AABaADb2BCbabDEDC交于点,连接.DEABEEC(1)判断与,与是否分别一定相似,若相似,请加以证明.DCEADEDCEBCE(2)如果不一定相似,请指出、满足什么关系时,它们就能相似.abEDCBA Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211四、与内接矩形有关的相似问题【例 13】中,正方形的两个顶点、在上,另两个顶点、分别在、上,ABCEFGHEFBCGHACAB,边上的高,求.15BC BC10AD EFGHSAHGFEDCBADMFECBA【巩固】如图,已知中,四边形为正方形,其中在边ABC3490ACBCC,DEGFDE,上,在上,求正方形的边长ACBC,FG,ABGFEDCBA【例 14】如图,已知中,四边形为正方形,在线段上,在上,如ABCDEGFDE,ACBC,FG,AB果,求的面积1ADFCDESS3BEGSABCGFEDCBA【巩固】如图,在中,动点(与点,不重合)在边上,ABC5AB 3BC 4AC EACACEF Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211交于点ABBCF当的面积与四边形的面积相等时,求的长ECFEABFCE当的周长与四边形的周长相等时,求的长ECFEABFCE试问在上是否存在点,使得为等腰直角三角形?若不存在,请简要说明理由;若存在,ABPEFP请求出的长EFFECBA Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:26605211课后作业课后作业1.直线与的边相交于点,与边相交于点,下列条件:;DEABCABDACEDEBC;中,能使与相似的条件有()AEDB AE ACAD ABAEEDACBCADEABCA1 个B2 个C3 个D4 个2.如图,在的边上取一点,在取一点,使,直线和的延长线相交ABCABDACEADAEDEBC于,求证:PBPBDCPCEPEDCBA3.已知:为的中位线上任意一点,、的延长线分别交对边、于、,求PABCMNBPCPACABDE证:1ADAEDCEBPNMEDCBA Well-known Education 专注于中小学个性化教育华侨城校区:华侨城中新街樱花阁 103(何香凝美术馆天桥对面)电话:266052114.如图,已知在矩形中,为的中点,交于,连接().ABCDEADEFECABFFCABAE(1)与是否相似,若相似,证明你的结论;若不相似,请说明理由.AEFECF(2)设是否存在这样的值,使得,若存在,证明你的结论并求出值;若ABkBCkAEFBCFk不存在,说明理由.FEDCBA5.如图,在梯形中,,,若,且梯形ABCDADBC396ADBCAB,4CD EFBC与梯形的周长相等,求的长AEFDEBCFEFFEDCBA6.如图,已知中,四边形为正方形,其中在边ABC5114 5ACABBC,DEGFDE,上,在上,求正方形的边长ACBC,FG,ABGFEDCBA

    注意事项

    本文(((完整版))相似三角形的性质及判定知识点总结+经典题型总结(学生版)-推荐文档.pdf)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开