欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    ARCH模型体系.pdf

    • 资源ID:69631039       资源大小:511.60KB        全文页数:10页
    • 资源格式: PDF        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    ARCH模型体系.pdf

    综述ARCH模型体系张世英,柯珂(天津大学管理学院,天津300072)摘要:综述了国内外在ARCH模型领域的研究成果,并将ARCH模型族归纳为一个体系.首先,对ARCH模型进行了分类,同时讨论了长记忆ARCH模型的性能.探讨了ARCH模型的检验和参数估计问题.文中指出,对复杂ARCH模型,鉴于其不可微分性,不存在传统意义下的似然函数的估计方法,文中运用遗传算法的思想,提出禁忌递阶遗传算法,解决复杂ARCH模型的参数估计和检验问题.最后,对ARCH模型的研究发展进行了评述.关键词:自回归条件异方差模型;分整理论;持续性中图分类号:N 945.12文献标识码:A文章编号:100025781(2002)0320236210ARCH modelling systemZHANG Shi-ying,KE Ke(School ofM anagement,T ianjin U niversity,T ianjin 300072,China)Abstract:In this paper,the literature survey of the development in ARCH modeling and at2tempts to make the ARCH fam ily of models a system.Firstly,the ARCH model are classi2fied.Besides,the quality of the long memory ARCH model are discussed.The problem oftesting and parameters estimation forARCH models are described.The paper points out thataccording to complex ARCH model that cant be differential,traditional likelihood estima2tion method and most parameter optim izateion methods are invalid.The tabu search hybridhierarchy genetic algorithm which can be proposed to estimate and testing for complexARCH model.Finally,the further research for ARCH models is remarked.Key words:ARCH model;fractional integration theory;persistance0 引 言自ARCH模型始创以来1,经历了两次突破.一次是文2提出广义ARCH(GeneralizedARCH),即GARCH模型,从此以后,几乎所有的ARCH模型新成果都是在GARCH模型基础上得到的.第二次则是由于长记忆在经济学上的研究取得突破,分整研究被证明更有效地刻画了某些长记忆性经济现象,与ARCH模型相结合所诞生的一系列长记忆ARCH模型的研究从1996年至今方兴未艾.本文将沿着3个阶段对ARCH模型族作一第17卷第3期2002年6月系统工程学报JOURNAL OF SYSTEM S EN GI N EER I N GVol.17 No.3Jun.,2002收稿日期:2000207204;修订日期:2001203202.基金项目:国家自然科学基金资助项目(70171001).总结.1 早期ARCH模型族(19821986)1.1 线性ARCH模型(LARCH)Engle首先于1982年提出了ARCH(auto2regressiveconditional heteroskedasticity)模型来刻画英国通货膨胀率中存在的条件异方差.这时的ARCH只是最简单的线性单变量方程.它认为条件异方差是外生变量、滞后的内生变量、时间、参数和前期残差的函数3.在传统计量经济学模型基础上,Engle设扰动项tN(0,2t),又规定ARCH(p)的条件异方差2t是p期扰动滞后2t-1,2t-2,2t-p的线性函数,则有xt=t+t(1)其中 t=et(2t)1?2(2)2t=0+pi=1i2t-i=0+(L)2t(3)et是服从标准正态的独立同分布扰动,即etn.i.d(0,1);(L)是滞后算子多项式;为了保证条件方差2t依概率1(w ith probability 1)为正,又加了如下的“非负约束”:0 0,i 0;同时为了 保 证xt的“二 阶 平 稳 性”(covariancestationarity),要求多项式1-(L)的根在单位圆外.对于ARCH(1)过程的高阶矩情况,Engle给出了其存在性定理:定理11ARCH(1)过程,E(2rt)存在的充要条件是 r1rj=1(2j-1)1Engle同样给出了更高阶的ARCH模型ARCH(p)的二阶平稳性定理:定理21ARCH(p)二阶平稳的充要条件是 相 关 特 征 方 程(associatedcharacteristicequation)的根都大于1.此时平稳方差为E(2t)=0?1-pj=1j毫无疑问,ARCH模型一经提出,就由于它突破了传统异方差模型并更好地与实践相结合,而显示了强大的生命力,并成为计量经济学研究方差的重要手段.而作为一种方法,线性ARCH存在着一些缺陷:由于E(x2t)=0+1E(x2t-1),ARCH(1)可写作x2t=0+1x2t-1+vt,其中 t=2t-E(2tt-1)=2t-2t.显然E(t)=0,E(2t)=1,这意味着xtAR(1),即ARCH(1)过程具有“一步记忆”的“波动集群性”(volatilityclustering effect),但同时也意味着x2t的自相关系数(j)=j1,由于0 1 0i 0(8)其中7t-1是过去信息集.若像前面所设etn.i.d(0,1),则式(6)可写作 t=ett,式(7)也可写作 2t=0+pi=1i2t-i,t是风险收益的均值.例如,有两种资产:一种为无风险资产,价格为1,弹性供给,收益为;另一种为风险资产,价格为p,随机收益为q,且E(q)=,V ar(q)=,则有x=(q?p)-,E(x)=?p-,V ar(x)=2=00t-i0(12)-t-i=t-i-+t-i(13)NARCH:2t=+(L)(t)(14)TARCH模型考虑到了方差与 t的符号有关,而NARCH模型是一种重要的非线性ARCH模型,因此都比LARCH模型更先进.但由于也没有考虑到方差的自相关和长记忆问题,而被归于第一阶段.当然由ARCH拓展为GARCH,在模型形式上是很容易的,而估计与检验要繁琐一些.因为下文中还将介绍TGARCH和N GARCH,在此仅略提一下.2GARCH模型的提出与发展2.1 线性GARCH模型(L GARCH)当人们发现ARCH模型无法表达“某些情形中自相关系数消退很慢”这一信息,而且在实际应用中对完全自由的滞后分布的估计常导致对非负 约 束 的 破 坏 时,GARCH模 型 应 运 而 生.GARCH是广义ARCH(generalized ARCH)模型的缩写.GARCH模型定义如下定义1xt=t+t(15)t7t-1N(0,2t)(16)2t=0+qi=1i2t-i+pi=1i2t-i=(17)0+(L)2t+(L)2tp0q00 0i0(i=1,q)i0(i=1,p)其中 式(16)常被写作下两式之和832系 统 工 程 学 报 第17卷 第3期t=et2tetn.i.d(0,1)(18)(19)当p=0时,这就是ARCH(q)过程,当p=q=0时,t为白噪声过程.如果1-(L)的根在单位圆外,则式(17)可写作2t=0(1-(1)-1+(L)(1-(L)-12t=0(1-pi=1pi)-1+i=1i2t-i(20)这就成了无穷阶ARCH模型(infinite2dimensional ARCH),即ARCH().所以ARCH(q)只是GARCH的特例.式(20)中 i是(L)(1-(L)-1展开式的系数,可写作i=i+nj=1ji-ji=1,qnj=1ji-ji=q+1,(21)其中n=m inp,i-1GARCH(p,q)还可写成另一种表示形式定义22t=0+qi=1i2t-i+pj=1j2t-j-pj=1jvt-j+vt(22)vt=2t-2t=(e2t-1)2t(23)其中etn.i.d(0,1),vt序列不相关.这时可以把GARCH(p,q)看 作 是 2t的ARMA(m,p),其中m=m axp,q.可以看出,定义2与定义1实际上是一回事,但定义2把GARCH的理论基础:时间序列的ARMA模型剥离 了 出 来,易 从 理 论 上 把 握GARCH模型的含义.GARCH模型的2条定理2如下:定 理3 平 稳 性 定 理.按 上 述 定 义 的GARCH(p,q)宽平稳的充要条件是(1)+(1)1,此时有E(t)=0,V ar(t)=0(1-(1)-(1)-1,Cov(t,s)=0.定理4按定义2给出GARCH(1,1)过程的2m阶矩存在的充分必要条件为(1,1,m)=mj=0cjmajj1m-j1 1(24)其中a0=1,aj=ji=1(2i-1)j=1,m(25)2m阶矩可写成迭代公式E(2mt)=amm-1n=0a-1nE(2nt)m-n0cm-nm(1,1,n)1-(1,1,m)-1(26)对应可得E(2m-1t)=0在 高 阶 矩 存 在 性 上,GARCH条 件 要 比ARCH宽松.例如:ARCH(1)的高阶矩存在条件amm1(am)-1?m时,ARCH(1)的2m阶矩不存在,而即使i=1i=1(1-1)-1(am)-1?m,GARCH(1,1)的2m阶矩仍很可能存在,显出GARCH有较长的记忆性.GARCH具有更强的 概 括 能 力,开 辟 了ARCH模型族的新篇章.从这时起,大多数新涌现的ARCH模型多为GARCH型,即考虑了异方差本身的自回归.而其它的ARCH模型在形式上很容易过渡为GARCH,只是由于具体形式不同,模型的估计、检验难度不同.对没有记忆性的序列而言,用ARCH更简洁,精确程度也未必比GARCH模型差.可以看出,GARCH模型从一定程度上解决了ARCH的前两个缺陷,但并未解决早期ARCH模型的第3点缺陷,即2t值取决于t-i的大小而与其符号无关.此外LGARCH为了确保 2t几乎处处非负,对参数 i,i所要求的非负限制也是一种局限.这使得任一期 2t的增加都会增加此后所有的2t+m(m1),而排除了 2t随机振荡的可能(而事实上,2t振荡是很可能的).而且这种非负限制增加了估计GARCH的难度,例如文5不得不给系数 j一个线性递减结构,以避免出现负系数.L GARCH模型的第3个局限性则是它很难判断引起条件方差波动源(shocks)的持续性(persistance),而这种持续性在许多研究有资产波 动 的 时 间 序 列 时 都 是 核 心 问 题.而 在GARCH(1,1)中,波动源可能以一种标准形式存在,又以另一种形式消亡,使得GARCH(1,1)的条件矩失效,即使GARCH过程本身严格平稳并时间遍历.鉴于GARCH也有其种种局限性,人们不满足于此,便有针对性地提出改善,这就产生了指数GARCH模 型(exponentialGARCHmodel,EGARCH)等.9322002年6月 张世英等:ARCH模型体系2.2EGARCH模型对Bollerslev的GARCH模型更准确的说法是L GARCH,即线性GARCH模型.它虽然较简单,但提供给人们一种新思路,即条件方差不仅与扰动的滞后值有 关,还 可 能 与 条 件 异 方 差(conditional heteroskedacity,CH)自身的滞后有关.此后各种各样的GARCH模型层出不穷,都是用各种数学工具变换CH的表达方式.几乎针对某一种问题,甚至某一族数据,都能找到尽可能精确的关于 2t的函数形式.于是又有人仿照GARCH对ARCH的概括,提出了概括多种GARCH形式的模型,如A2PGARCH(asymmetricpower GARCH)9及增广GARCH(augmentedGARCH)10.针对上述问题,文3提出了指数GARCH模型(exponential GARCH model).模型如下ln(2t)=+k=1kg(et-k)+qj=1jln(2t-j)(27)其中g(zt)=zt+zt-Ezt(28)其中jj=1,q和kk=1,是非随机的实数标量序列3,g()被称为信息影响函数(new s impactfunction),满足Et-1g(et)=0,可以看出,当 0时,在波动大小相同的情况下,未来条件方差在负波动下增幅大于正波动下的增幅,体现了不对称性.显然EGARCH同样保证了 2t的非负性,同时对系数没有限制,这给估计带来很大的便利.不仅如此,EGARCH还逐一克服了GARCH的3个局限性:可看出g(et)中,et-Eet表达了新息et的大小变化时对异方差2t的影响.而et反映出ln(2t)与et符号有关.例如当=0,0则g(et)0,i0,j0,-1 i 1,00(29)同时给出了E(t)和E(t)的存在性定理:定理6 与E(t)和E(t)的存在性相等价的充要条件是12qi=1i(1+i)+(1-i)2(-1)?2#(+12)+pj=1j 0,i0(i=1,q),i0(i=1,p)V GARCH172t=0+(L)2t+(L)(et-c)2(36)门域GARCH(TGARCH)7t=0+(L)t+(L)t+(L)max(0,-t)(37)增广GARCH模型的定义为2t=t-+11?当 0exp(t-1)当=0(38)其中t=0+pi=1(i)1t-i+qi=1(i)2et-i-c+(i)3max(0,c-et-i)t-i+qi=1(i)4f(et-i-c;)+(i)5f(max(0,c-et-i);)(39)f(z;)=z(-1)?z0(40)可 以 看 出,除 了ARCH2M模 型 和GARCH2M模型外,增广GARCH模型将现有的其它所有短记忆ARCH模型都包括了进去.由于增广GARCH模型有如此强的概括能力,从而在模型设定检验中有得天独厚的优越性.考虑到将其扩展到长记忆领域,并把 2M项引入,从而得到一个概括所有现有模型以及相关的将来可能会提出的一些模型.这就是由本文作者提出的分整增广GARCH2M模型.2.5 单整GARCH模型(IGARCH)在实际研究中,人们常常发现GARCH模型的参数和参数的和非常接近于1.例如文11用GARCH(1,1)估计了40个不同的金融时间序列,结果显示其中34个序列的+0.97;文9对S&P日收益序列估计的+=0.997.在这种规律性下,异方差函数具有单位根和单整性,于是人们把符合这种特征的GARCH模型称作单整GARCH模型.IGARCH模型是介于短记忆GARCH模型与长记忆GARCH模型之间的模型,并由此引出一阶矩中长记忆性概念在二阶矩中的映射:持续性(persistence)概念.定义(单整广义自回归条件异方差模型IGARCH)当ARCH模型的实际估计参数处于“二阶平稳约束”的临界值上时,即pi=1i+qj=1j=1时,就形成了单整GARCH模型.模型形式可以写作(L)(1-L)2t=+(1-(L)vt(41)其中(L)(1-L)=1-(L)-(L)为m-1阶,这是由于式(17)的自回归多项式1-(L)-(L)有一个单位根.vt定义如式(23).这时任何对条件方差 2t的影响都将无限持续 下 去,即 2t具 有“持 续 记 忆”(persistencememory);而无条件方差 2无穷大14.从 预测的角度看,二阶平稳GARCH和IGARCH之间的区别就是条件均值中I(0)过程与I(1)过程的区别.以IGARCH(1,1)为例,由于2t=+2t-1+2t-1=1-+k=1k-12t-k(42)可看出 2t-k的系数 k-1随k指数衰减,只要 1.从这个意义上可知,IGARCH模型是长记忆GARCH模型与其它GARCH模型的分水岭.事实上在长记忆领域的ARCH模型被提出后,人们发现IGARCH特征很可能是长记忆ARCH模型在短记忆研究领域的近似.1422002年6月 张世英等:ARCH模型体系该模型将以专文介绍,也见参考文献27.3 长记忆与ARCH模型的结合人们在研究ARCH模型时注意到扰动项的自相关系数也呈典型的双曲率衰减特征,这引发了ARCH模型与长记忆性相结合的研究热潮.目前见诸文献的长记忆ARCH模型主要有3个:分整GARCH(fractionalintegratedGARCH,F IGARCH)18、长 记 忆GARCH(long memoryGARCH,简记为LM2GARCH)19、分整指数GARCH20(fractionalintegratedexponentialGARCH,F IEGARCH).3.1 长记忆ARCH模型LM2ARCH经研究发现,许多时间序列数据的波动的记忆性都比所有短记忆ARCH模型所刻画的波动的记忆性要强.通常GARCH(1,1)过程描述短期效应(short2run effect)的效果要好于对长期效应的描述.可以认为不同的波动部分(volatilitycomponent)控制着序列的不同时段,某些部分有很强的短期效应,衰减也非常迅速,另一些部分则有相对小的短期效应,却能持续相当长的时期.在这种思路下,文19提出了长记忆GARCH模型,更具体的说是N部GARCH模型如下xt=t+tt=ettetiidN(0,1)2t=Ni=1i2itNi=1i=12it=2(1-i-i)+i2t-i+i2it-1(43)其中 i是第i部分波动的权重,2是无条件方差,是常数.通过实证证明19:尽管各分量方差2it的ACF呈指数衰减,但N部GARCH模型仍刻画了大范围相依性.但是显然当N很大时,i和i的估计将是很困难的,而且人们无法事先知道到底有多少部分,即N有多大.于是人们考虑到当N趋向于无穷时的极限情况,此时 和 可取任意值,从而使N部GARCH不会对应于任何一个有有限参数的GARCH过程.下面给出的是 2t的ACF.当N 时式(43)中第4个方程可以写作2t=2101-1-dF(,)+101-L2t-1dF(,)=2(1-)+k=1B(p+k-1,q+1)B(p,q)2t-k(44)其中F是分量方差 2it(i),它是 和 的函数.由于 2t-k的系数ak=B(p+k-1,q+1)B(p,q)=q#(p+q)#(p+k-1)#(p)#(p+q+k)q#(p+q)#(q)k-1-q(45)具有长记忆特征,式(44)被称作q阶长记忆ARCH模型(long memory ARCH model of orderq),记作LM(q)-ARCH模型.从式(45)可以看出ak的衰减基本上只取决于q,但只有当很接近于1时,模型才会显示出它应有的长记忆性.但长记忆ARCH模型中2t-k的系数ak是以双曲速率衰减的,这比有限参数的GARCH模型衰减慢得多.3.2 分整GARCH模型定义(分整GARCH模型)18若平稳时间序列xt的残差平方项2t满足差分方程(L)(1-L)d2t=+1-(L)vt(46)其中L是滞后算子,vt为白噪声序列,(L)和(L)分别是p阶和q阶平稳算子(L)=1-1L-2L2-PLP(L)=1-1L-2L2-qLq则称xt为分整广义自回归条件异方差模型,简记为F IGARCH(p,d,q).当0 d 0.5时,2t是平稳的,均值为E(2t)=E(2t)=2,所以等式右边为白噪声,2t是一个I(d)过程,进一步地,若 t的四阶矩存在,则该模型的 2t的理论ACF为18k=corr(21,2t-k)=#(1-q)#(q)#(k+q)#(k+1-q)#(1-q)#(q)k2q-1(47)242系 统 工 程 学 报 第17卷 第3期这是一个以双曲速率衰减的过程,体现模型的长记忆特征.当d=0时,式(46)成为(L)2t=+1-(L)vt为线性GARCH模型,当d=1时,成为(L)(1-L)2t=+1-(L)vt是IGARCH模型.而0d1的灵活性使得研究“长期相依性”成为可能.事实上,式(46)与ARF I MA模型的定义式异曲同工,只不过式(46)研究的是方差,ARF I MA研究的是期望.可以说,F IGARCH融合了一阶矩的分整过程与标准GARCH过程的许多特点.随着滞后阶数的增大,参数d反映了其作用于远距离观测值之间的效果以双曲率缓慢下降的长记忆性,而参数 与 体现的是它们作用于远距离观测值之间的效果以负指数率迅速衰减的短记忆性.换言之,d可以用来描述时间序列高阶滞后的相关结构,而1,2,p与1,2,q可以用来描述低阶滞后的相关结构.在F IGARCH(p,d,q)中,波动源(shock,即5t)对预测未来条件方程的作用力将呈缓慢的双曲衰减速率,而分数差分参数d也可从波动源的衰减速率中判断出来.3.3分整指数GARCH模型(F IEGARCH模型)从以前的讨论中可知EGARCH模型在理论上优于GARCH.而且,在估计EGARCH模型ln(2t)=+(1-pi=1iLi)-1(1+qj=17jLj)g(et-1)(48)时,1-(x)的最大根也非常接近于1.将式(48)的EGARCH(p,q)扩展为F IEGARCH(p,d,q),设1-(L)=(L)(1-L)d,得ln(2t)=+(L)-1(1-L)-d1+7(L)g(et-1)(49)式(49)即F IEGARCH模型.与ARF I MA模型类似,当-0.5d0.5时,F IEGARCH是二 阶 平 稳 且 可 逆 的.而 且ln(2t)在d 0.5时是严格平稳且时间遍历的.尽管F IGARCH和F IEGARCH有很好的应用前景,但也并非无懈可击21.就F IGARCH而言,由于t不是二阶平稳的,所以自协方差函数无法定义.(L)不是用L2定义的,无法按常规应用谱域和时域中的自相关方法.对FIEGARCH而言,要得到参数估计量的渐近值是极为困难的,即使d=0.这些问题使F IGARCH、F IEGARCH的前景蒙上了一层阴影.4ARCH模型族参数估计和检验4.1ARCH模型参数估计方法对ARCH模型族进行参数估计主要有两种途径,一种是极大似然法(ML E)和矩估计法(MM),另一种是遗传算法(GA).在模型的似然函数可求出的情况,人们主要采用极大似然法,属于这类方法包括对常规数值方法(如new ton法等)改进的BHHH算法22和伪极大似然法(QMLE)23.BHHH算法是具有很好收敛性的实用方法,其估计具有一致性和渐近正态性22,是一种常用的ARCH模型参数估计方法.除了用极大似然法估计参数,还可以用矩估计(MM)来估计参数,它可以回避求似然函数的困难,在实际中有广泛应用.Hanson提出一种与一般矩估计方法有相同一致估计和渐近正态分布的改进矩估计法 广义矩估计(GMM),GMM是由正交条件构造一个目标二次型,所求最优参数估计对应二次型的极小解24,25.在研究连续时间序列或近似连续时间序列的异方差模型时,Gallant和Tauchen提出另一种矩估计方法的改进 有效矩估计方法(EMM)26.极大似然法和矩估计法等最终都要归结为求某类多变量非线性函数的最优化问题,而它们采用的都是微分可行方向法,这种方法存在以下局限:鲁棒性差,要求目标函数必须平滑,否则导致算法失败.容易收敛到局部最优解.为克服上述参数估计的缺点,提出采用遗传算法(GA)进行ARCH模型的参数估计.与传统算法相比,GA算法是对参数群体进行优化,且它不受函数约束条件(如连续性,可微性,单极值)的限制,同时GA算法搜索是从问题的串集开始,而不是从单个解开始,大大减少陷入局部极值的可能性.前面提到的分整增广GARCH-M模型,由于它的表达式复杂,使得它的参数估计不可能通过解析计算来获得,但采用遗传算法的改进型 禁忌递阶遗传算法估计参数可获得很好3422002年6月 张世英等:ARCH模型体系的结果27.4.2ARCH模型族的检验ARCH族模型检验的基本方法是拉格朗日乘子(LM)检验1和BDS检验.对于LM检验,其零假设为模型是简单回归模型Yt=Xt+t(50)其中 t是正态白噪声过程,tIt-1N(O,2),It表示第t期的已知信息集.而备择假设为误差符合2t=0+qi=1i2t-i=0+(L)2t(51)的ARCH(q)过程.文28使用LM检验模型的ARCH效应,并提出了TR2统计量,TR2渐近于自由度为q的 2分布.尽管TR2是一个简单而又广泛应用的统计量,但如果式(50)的模型由于忽略了重要回归项,或没有考虑一些非线性或序列相关项,ARCH检验将可能由于这些失误导致误差平方项的序列相关而被拒绝,因此当ARCH检验被拒绝时不能认定ARCH效应必然存在.另一种广泛应用的检验方法是BDS检验.BDS检验对很多不满足独立同分布的情况都有效29,它对ARCH备择假设的检验效果与Engle的LM检验接近.进一步,可将BDS检验推广到多变量情况.在金融计量分析中BDS检验有大量应用,如文29231等.5 结束语本文系统地总结了迄今为止见诸文献的几乎所有单变量ARCH模型,使之成为一个体系,对其中一些较重要的模型也作了较详尽的介绍,并有针对性地指出一些模型的缺陷,及其改进途径.有关ARCH模型的诊断分析和变结构研究见文32,有关向量GARCH模型及其协同持续性研究见33,34.目前关于波动性的建模理论基本上可以分为两大类,即ARCH类模型和随机波动(stochasticvolatility,SV)模型,及将ARCH类模型和SV类模型包容并扩展的平方根随机自回归波动(SRSARV)模型.对广义自回归条件异方差即GARCH模型来说,条件方差的扰动是一个可观测的变量,并且反映了条件方差的自相关性,这样就可以通过建立相关模型准确地度量条件方差的变化趋势.与此同时,直接从金融波动现象的研究中发展而来的随机波动模型以其简洁性和准确描述金融数据的波动现象日益受到人们的重视21,35237.与自回归条件异方差模型不同,随机波动模型的波动过程是一个潜在随机变量的形式,这一特性可以更好地描述金融市场数据波动变化的不确定行为.参 考 文 献:1Engle R F.A utoregressive conditional heteroskedasticity w ith esti mates of the variance of U.K.InflationJ.E2conometrica,1982,50:987210082Bollerslev T.Generalized autoregressive conditional heteroskedasticityJ.Journal of Econom ics,1986,31:30723273N elson D B.ARCH models as diffusion approxi mationsJ.Journal of Econometrics,1990,45:7238 4Christie A A.The stochastic behavior of common stock variances:value,leverage,and interest rate effectsJ.Journal of Financial Econom ics,1982,10:40724325Engle R F,L ilien,Robins R P.Esti mating ti me varying risk prem ia in the term structure:The ARCH2M modelJ.Econometrica,1987,55:39124076Engle R F,Bollerslev T.M odeling the persistence of conditional variancesJ.Econometric Review s,1986,5:812877Zakoian J M.Threshold heteroskedasticmodelsJ.Journalof Econom icDynam ics and Control,1994,18:93129558H iggensM L,Bera A K.A class of nonlinear ARCH modelsJ.International Econom ic Review,1992,33:13721589D ing Zhuanxin,Granger C W J,Engle R F.A long memory property of stock market returns and a new modelJ.Journal of Empirical Finance,1993,1:83210610Duan Jin2Chun.A ugmented GARCH(p,q)process and its diffusion li m itJ.Journal of Econometrics,1997,79:97212711Taylor S.M odeling financial ti me seriesM.N ew York,N Y:W iley and Sons,1986442系 统 工 程 学 报 第17卷 第3期12Schwert GM.W hy does stock market volatility change over ti meJ.Journal of Finance,1989,44:11152115313Glosten L,Jaganathen.R and RunkleD.Relationship between the expected value and the volatility of the nom i2nal excess return on stocks.unpublished manuscript,J.L.Kellogg Graduate School,Northwestern U niv.,198914Geweke J.M odeling the persistence of conditional variances:A commentJ.Econometric Review s,1986,5:5726115Pantula S C.M odeling the persistence of conditional variance:A commentJ.Econometric Review s,1986,5:125016M ilhj,A The moment strucure of ARCH processesJ.Scandinavian Journal of Statistics,1985,12:2812292 17Engle R F,N g V K.M easuring and testing the i mpact of new s on volatilityJ.Journal of Finance,1993,48:174921778 18 Baillie R T,Bollerslev T,M ikkelsen H.Fractional integrated generalized autoregressive conditional het2eroskedasticityJ.Journal of Econometrics,1996,74:323019D ing Zhuanxin,Granger CW J,M odeling volatility persistence of speculative returns:A new approachJ.Jour2nal of Econometrics,1996,73:1852215 20Bollerslev T,M ikkelsen H O.M odeling and pricing long memory in stock market volatilityJ.Journal of E2conometrics,1996,73:1512184 21Breidt F J,Crato N,Pedro de L i ma.The detection and esti mation of long memory in stochastic volatilityJ.Journal of Econometrics,1998,83:325234822Berndt E R,HallB H,HallR E,et al.Esti mation and inference in nonlinear structuralmodelsJ.A nnualof E2conom ic and SocialM easurement,1974,4:6532665 23W eiss A A.A symptotic theory for ARCH models:Esti mation and testingJ.Econometric Theory,1986,2:107213124Hansen L,Singleton K.Generalized instrumental variables esti mation of nonlinear rational expectations modelsJ.Econometrica,1982,50:126921286 25Cragg J G.M ore efficient esti mation in the presence of heteroskedasticity of unknown form J.Econometrica,1983,51:751276426Amdersen T G,L und J.Esti mating continuous2ti me stochastic volatility modes of the short2term interest rateJ.Journal of Econometrics,1997,77:343237727柯珂,张世英.禁忌递阶遗传算法研究J.控制与决策,2001,16(4):480248328Engle R F.W ald,likelihood ratio and lagrange multiplier tests in econometrics.in:Z.Griliches andM.D In2triligator,eds.,Handbook of EconometricsM,vol.11.North2Holland:Am sterdam,198429Brock W A,H sieh D A,L eBeron B.Nonlinear dynam ics,chaos and instability:Statistical theory and econom icevidenceM.Cambrige,MA:ML T Press,1991 30H sieh D A.Chaos and nonlinear dynam ics:Applications to finacial marketsJ.Journal of Finance,1991,46:18392187831Schein kman J A,L e Baron B.Nonlinear dynam ic and stock returnsJ.Journal of Business,1989,62:311233732柯珂,张世英.ARCH模型的诊断分析J.管理科学学报,2001,4(2):1221833李汉东,张世英.BEKK模型的协同持续性研究J.系统工程学报,2001,16(3

    注意事项

    本文(ARCH模型体系.pdf)为本站会员(qwe****56)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开