欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    近世代数课件--2.7 循环群.ppt

    • 资源ID:69731829       资源大小:201KB        全文页数:8页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    近世代数课件--2.7 循环群.ppt

    7循环群循环群7.1 例子例子7.2 定义定义7.3 基本定理基本定理7.4 如何研究代数系统如何研究代数系统7.1例子例1、n次分园域例2、整数加群Z 启示:例1群的元都是G的某一个固定元a的乘方。例2 也是,这个群的全体的元就都是的乘方这一点,假如把G的代数运算不用而用 “”来表示,就很容易看出我们知道的逆元是假定m是任意正整数,那么这样G的不等于零的元都是的乘方但是G的单位元,照定义 定义定义 若一个群G的每一个元G都是的某一个固定元a的乘方,我们就把G叫做循环群;我们也说,G是由a元所生成的,并且用符号来表示a叫做G的一个生成元。生成元。7.2定义 问题:a的任意乘方 属于G吗?.,它到底包含多少个互异的元素?我们再举一个重要的例 例3 G包含模n的n个剩余类我们要规定一个G的代数运算,我们把这个代数运算叫做加法,并用普通表示加法的符号来表示,规定:(1)首先,必须证明这样规定的“”不会产生歧义(复习等价类及剩余类)。,那 ,照我们的规定:(2)如果它们的右端不一样:,那“”就不是一种代数运算了。我们将证明这种情形不会发生。(1)(2)(3)(4)所以对于这个加法来说G作成一个群这个群叫做模n的剩余类加群,用 。以n=4 介绍 的乘法表7.3基本定理基本定理定定 理理 :假定G是一个由元a所生成的循环群 ,那么G的构造完全可以由a的阶来决定:(1)如果 ,那么 (2),那么 例4 设 ,那么 设 ,那么 现在回答:循环群 ,包含多少个互异的元素?.它们和上面的两种循环群的例子一致 证明证明分两种情况(1)第一个情形:a的阶无限。构造映射 ,1).2)3)4)所以(2)第二种情形:a的阶是n.定义映射:,首先,必须证明映射的合理性;其次,1).2)3)4)所以 7.4 如何研究代数系统如何研究代数系统I.分类:同构的分成同一类,存在及数量II.每一类的内部结构III.表示:对于循环群的存在问题,数量问题,构造问题都已能解答,循环群已完全在我们的掌握之中这一节的研讨是近世代数的研讨的一个缩影在近世代数里,不管是在群论里还是在其它部门里,我们研究一种代数系统就是要解决这一种系统的存在问题,数量问题和构造问题假如我们对于这三个问题能得到如同我们对于循环群所得到的这样完美的解答,我们的目的就算达到了作业作业:P61:3-5

    注意事项

    本文(近世代数课件--2.7 循环群.ppt)为本站会员(s****8)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开