欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    人教A版新教材必修第一册《4.3.1 对数的概念》教案(定稿).docx

    • 资源ID:69854346       资源大小:91.54KB        全文页数:11页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    人教A版新教材必修第一册《4.3.1 对数的概念》教案(定稿).docx

    第四章指数函数与对数函数§4.3对数对数的概念【学习目标】1.了解对数、常用对数、自然对数的概念2会进行对数式与指数式的互化3会求 简单的对数值.【导语】大家阅读课本128页的“阅读与思考”(大约3分钟),可以发现,对数的出现是基于当时天 文、航海、工程、贸易以及军事快速开展的需要而出现的.经过不断开展,人们发现,对数 与指数存在互逆的关系,然而更有意思的是“对数源出于指数”,而对数的创造却先于指数, 对数是用来解决指数所不能解决的问题,让我们一起来发现对数与指数的关系吧! 一、对数的概念问题1我们知道假设2人=4,那么工=2;假设3、=81,那么x=4;假设>=128,那么x=7等等这些 方程,我们可以轻松求出x的值,但对于2、=3, 1/产=2, 1,=5等这样的指数方程,你能 求出方程的解吗?提示 用指数方程不能解决上述方程,为了解决这个问题,早在18世纪的欧拉为我们提供了 解决问题的方案,那就是发现了指数与对数的互逆关系,用对数来表示指数方程的解.【知识梳理】对数的定义:一般地,如果a=N(>。,且W1),那么数x叫做以。为底N的对数,记作x = logaN,其中叫做对数的底数,N叫做真数.,数或对岑/ =N« 底戳!=10g%弃或真数注意点:对数是由指数转化而来,那么底数。、指数或对数X、鬲或真数N的范围不变,只是位置和 名称发生了变换.(2)log“N的读法:以。为底N的对数.例1假设对数式1。涣-2)3有意义,那么实数,的取值范围是()A.2 B.3 c.4 D.5答案B-4解析因为。3=g, >0,3设k)g2Q = x,所以停=, 3所以X=3.16. log2log1(log2x)=log3log1(log3y) =log5logj(log5z)=0 ,试确定x, y, z 的大 235小关系.解 由 10g310gl(10g3y)=。, 3i1 tn 1得log(log33)= l, log3y=1, y=31± 得 log(log5Z)=l , log5Z=5,z = 55 =(56)30 , 5 V310>215>56,=(310)30.3由 logzUogQogzxXk。,21-得log (log2%)=l, log2x=1, x = 22=(215)30.2由 10g510g,(10g5Z) 二。,5A. 2, +8)B. (2,3)U(3, +8)C. (8, 2)D. (2, +8)答案B解析 要使对数式log(r-2)3有意义,限2#L解得。2,且岸3.所以实数/的取值范围是(2,3)U(3, +8).反思感悟关于对数式的范围力>0,利用式子log/= a>0,求字母的范围.跟踪训练1在M=10g(x-3仆+1)中,要使式子有意义,X的取值范围为()A. ( 8, 3B. (3,4)U(4, +8)C. (4, +8)D. (3,4)答案Bx- 1>0,解析由对数的概念可得上一3>0,3W1,解得3<x<4或x>4.二、对数与指数的互相转化问题2现在你能解指数方程2、=3, 1.1产=2, 10' = 5 了吗?提示 x=log23; x=logi.n2; x=logio5.【知识梳理】两类特殊对数以10为底的对数叫做常用对数,并把logioN记为IgN.(2)以无理数e=2.718 28为底的对数称为自然对数,并把logeN记为In N.例2将以下指数式与对数式互化:(l)log216=4;log27=-3 ;3(3)ln 10 = 2.303;(4)43 = 64;(5)3-2=;(6)10-3=0.001.解24=16.(2)G)r = 27.(3/2.303= 0.(4)log464=3.(5)log31=-2.(6)lg 0.001 =-3.反思感悟指数式与对数式互化的思路(1)指数式化为对数式:将指数式的赛作为真数,指数作为对数,底数不变,写出对数式.(2)对数式化为指数式:将对数式的真数作为赛,对数作为指数,底数不变,写出指数式. 跟踪训练2以下指数式与对数式互化不正确的一组是()A. 10°= 1 与 1g 1=0-1 1 1B.27 3 =与陛 =J-C. 10839=5与92=3Iog55 = 1 与 51=5答案C-i解析 因为92=3化为对数式应为log93=5,故C不正确.三' 对数的计算问题3你能把2°= l,2i=2, log2%=log2X化成对数式或指数式吗?提示 log2l =0; log22=l ; 2log2,v =x.t知识梳理,对数的性质(l)logj=0(6z>0,且 W1).(2)logz=1(6/>0,且 a W1).(3)0和负数没有对数.(4)对数恒等式:嘎”"=&; logri=n>0,且 N>Q).例3求以下各式的值.(Dlog981 =. logo.41 =.In e2=.答案202解析 设log981=x,所以91=81=92,故 x=2,即 loggSl =2.设 logo,41 =X,所以 0.4x= 1 =0.4°,故 X=0,即 10go.41=。.设 lne2=x,所以 e"=e2,故=2,即 lne2=2.反思感悟对数式中求值的基本思想和方法基本思想在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. 基本方法将对数式化为指数式,构建方程转化为指数问题.利用赛的运算性质和指数的性质计算.跟踪训练3求以下各式的值:(l)log28; (2)log91; (3)lne; (4)lg 1.解(1)设 log28=x,那么 2V=8 = 23.x=3. log28 = 3.(2)设 10gq=x,贝I 9'=/=9- 1 二 log9§= - 1.In e= 1.加1=。.四、利用对数性质求值例4求以下各式中x的值:2(l)log2(log5X)=0; (2)log3(lgx)=l; (3)x=7 g7 ; (4)log27X=p (5)logxl6=-4.解(l)Vlog2(log5X)= 0, AlogM=2°= 1, .e.x=51 = 5.(2)Vlog3(lgx)=l, Algx=31 = 3, /.x=103=l 000.7(3) x = 7、唾7 5 =7.77 5 =7+5=_.2二 3x一(4)由 10g27X=彳,得 x=27 3=3 I=3-2D Q-(5)由 logJ6= -4,得 x 4=16,即工4=布=(巧,又 x>0, 且 xW 19 2,延伸探究 把本例中的“例g2(lOg5X)= 0”改为"10g2(10g,)= 1 ” ,求的值.解 因为 10g2(10g5X)= 1,所以 10g5%=2,贝! x=52=25.反思感悟 利用对数的性质求值的方法(1)求解此类问题时,应根据对数的两个结论log6J =0和log=l(6z>0且aWl),进行变形求 解,假设对数值求真数,那么可将其化为指数式运算.(2)多重对数式的值,求变量值,应从外到内求,逐步脱去“log ”后再求解.跟踪训练4求以下各式中x的值.(l)log1x = -3; (2)log49=4; (3)lg 0.000 01 =x; (4)ln y=x; (5)log8log7(log2x)=0; 3(6)10g210g3(10g2X) = l.解(1)x=Q)-3 = 27(2)由 f=49, £>0 且 xWl,得犬=巾.(3)i 1(/=0.000 01 = 10-5,得 X=-5.11(4)由 e"=e2,得光=一亍(5)由 log8log7(lOg2X) = 0,得 log7(log2X)=l,即 log2X=7, Ax=27.(6)由 Iog2log3(log2x)=l ,得 Iog3(log2%) = 2, log2X=9, *>x=2.课堂小结-.知识清单:(1)对数的概念.(2)自然对数、常用对数.(3)指数式与对数式的互化.(4)对数的性质.1 .方法归纳:转化法.2 .常见误区:易忽视对数式中底数与真数的范围.随堂演练.对数log(+3)(5。)中实数。的取值范围是()A. (一8, 5)(一3,5)B. (-3, 2)U(2,5)(-3, +8)答案C解析 要使对数log伍+3)(5)有意义,。+3>0,叫 5->0,解得。£(3, -2)U(-2,5).、a+3 W1,. 2-3=9化为对数式为() o3-21 - 80gB. log) (-3)=28c.10g2g=-3D. Iog2( -3) = g答案C解析根据对数的定义知选C.3.log/=c,那么有()A. = c答案C解析根据对数的定义知选C.3.log/=c,那么有()B. = cC. a2c=bD. c2ab答案B解析由题意得(。2>=乩即。2c=尻4.计算:31og22+21og31 31og77 + 31n 1 =答案0解析 原式= 3Xl+2X03Xl + 3X0=0.课时对点练不基础巩1. log/=l成立的条件是()A.A.a=bB. a=b M b>0C. a>09D. 4>0, a=bWT答案D解析由0gab= 1得, a>0 且 a=bl.B ,()<。,D. a<解得0<a<;.)2 .使对数log,一2+1)有意义的的取值范围为()A. 且"IC.。>0 且答案B2a+1>0, 解析由题意知<。>。, 1,.10gxi6 = 2,那么x等于(A. 4 B. ±4 C. 256 D. 2答案A解析由 log,x16=2,得=16=(±4)2,又 x>0,且 19 x=4.3 .log81=%,那么x等于()A. -8 B. 8 C. 4 D. -4答案BX解析 由题意得(S)x=81,即虹=3。那么x=8.4 .对于。0且以下说法正确的选项是()假设 M=N,那么 logM=k)gaN;假设 logM=logN,那么 M=N;假设 logc2 = iogw2,那么 M=N;假设 M=N,那么 logaVUoga".A.B.C.D.答案c解析中,假设N小于或等于。时,logM=logN不成立;正确;中,M与N也可 能互为相反数;中,当M=N=0时不正确.5 .(多项选择)以下等式正确的有()lg(lg 10)=0A. lg(lne)=0C.假设 lgx=10,那么 x=10D.假设 lnx=e,那么 x=e?答案AB解析 A 项,lg(lg 10)=lgl=0,故 A 正确;B 项,lg(lne)=lgl=O,故 B 正确;C项,假设lgx=10,那么x=10叫故C错误; D项,假设lnx=e,那么工=3,故D错误.6 .假设 Q = log23,贝 12。+2-。=.答案y解析 .a=iog23,2= 2log23 =3,7 .log7log3(log, %)=0 ,贝ijx=解析 由题意得log3(log I x)= 1 ,X =.将以下指数式、对数式互化.(1)35 = 243; (2)2= (3)log181 = -4; (4)log2128=7.角翠(l)log3243 = 5.(2)log2石=-5(护=81.(4)27=128.8 .假设log/ = 7%, logy=m+2,求的值. y24解 V log j x = m ,.,出"=羽 f=(1h.log1y=m+2, .'.(J)加+2=% y=(1)2w+4.4ni综合运用.假设log.M=z,那么X, y, z之间满足( )B. y=x1zD. y=zJxA.C. y=7V 答案B 解析由题意得 .y=(xz)7=x7z.2.化简 3喝4 27§ Tg 0.01+ln e?等于()A. 14 B. 0 C. 1 D. 6答案Bq 21解析 原式=4-03)3 Tg -+3=4-32-(-2) + 3 = 0.9 .设川og2X)=2,(x>0),那么八2)的值是()A. 128 B. 16 C. 8 D. 256答案B解析由log2X=2可知x=4, 所以犬2) = 24=16.h.假设。=lg2, b=lg3,那么IO。"” 的值为.4答案*- J解析 ,=lg 2, 10。=2.7=lg 3,a(10")2 4.10/?=3.A 100 2 =175/-=1门拓广探究-415.假设 a>0,标=§,那么 log2。等于().y>x>z.

    注意事项

    本文(人教A版新教材必修第一册《4.3.1 对数的概念》教案(定稿).docx)为本站会员(太**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开