八下数学:19.2.2.4-一次函数与实际问题课件.ppt
-
资源ID:69869209
资源大小:2.85MB
全文页数:61页
- 资源格式: PPT
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
八下数学:19.2.2.4-一次函数与实际问题课件.ppt
导入新课讲授新课当堂练习课堂小结19.2.2 一次函数第十九章 一次函数第4课时 一次函数与实际问题情境引入学习目标1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力;(重点)3.认识数学在现实生活中的意义,提高运用数学知识解决实际问题的能力(难点)导入新课导入新课情境引入乌鸦喝水,是伊索寓言中一个有趣的寓言故事.故事梗概为:一只口渴的乌鸦看到窄口瓶内有半瓶水,于是将小石子投入瓶中,使水面升高,从而喝到了水.告诉人们遇到困难要积极想解决办法,认真思考才能让问题迎刃而解的道理.数学问题也一样哦.10cm9cm 如果将乌鸦喝水的故事进行量化,你能判断乌鸦丢进多少颗石子,水能刚好在瓶口?说说的做法!温度的度量有两种:摄氏温度和华氏温度.水的沸点温度是100,用华氏温度度量为212;水的冰点温度是0,用华氏温度度量为32.已知摄氏温度与华氏温度的关近似地为一次函数关系,你能不能想出一个办法方便地把华氏温度换算成摄氏温度?例1讲授新课讲授新课一次函数与实际问题 用C,F分别表示摄氏温度与华氏温度,由于摄氏温度与华氏温度的关系近似地为一次函数关系,因此可以设 C=kF+b,解:由已知条件,得212k+b=100,32k+b=0.解这个方程组,得因此摄氏温度与华氏温度的函数关系式为做一做 某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的剩余油量y(L)与工作时间x(h)之间为一次函数关系,函数图象如图所示.(1)求y关于x的函数解析式;(2)一箱油可供拖拉机工作 几小时?解:(1)y=-5x+40.(2)8h购买种子数量/kg0.511.522.533.54付款金额/元例2“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(1)填写下表:2.5 57.5 10 1214 16 18(2)写出购买量关于付款金额的函数解析式,并画出函数图象.分析:从题目可知,种子的价格与有关.若购买种子量为x2时,种子价格y为:.若购买种子量为0 x2时,种子价格y为:.购买种子量y=5xy=4(x-2)+10=4x+2解:设购买量为x千克,付款金额为y元.当x2时,y=4(x-2)+10=4x+2.当0 x2时,y=5x;(2)写出购买量关于付款金额的函数解析式,并画出函数图象.叫做分段函数.注意:1.它是一个函数;2.要写明自变量取值范围.y=5x(0 x2)4x+2(x2)y=5x(0 x2)y=4x+2(x2)yxO1210314的函数图象为:y=5x(0 x2)4x+2(x2)思考:你能由上面的函数解析式或函数图象解决以下问题吗?(1)一次购买1.5kg种子,需付款多少元?(2)30元最多能购买多少种子?为节约用水,某市制定以下用水收费标准,每户每月用水不超过8立方米,每立方米收取1元外加0.3元的污水处理费;超过时,超过部分每立方米收取1.5元外加1.2元污水处理费,现设一户每月用水x立方米,应缴水费y元.(1)求出y关于x的函数解析式;做一做解:y关于x的函数解析式为:(1+0.3)x=1.3x,(0 x8)(1.5+1.2)(x-8)+1.38=2.7x-11.2.(x8)y=(2)当x=10时,y=2.710-11.2=15.8.(3)1.38=10.426.6,该用户用水量超过8立方米.2.7x-11.2=26.6,解得x=14.答:应缴水费为15.8元.答:该户这月用水量为14立方米.(2)该市一户某月若用水x=10立方米时,求应缴水费;(3)该市一户某月缴水费26.6元,求该户这月用水量.某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后.(1)服药后_时,血液中含药量最高,达到每毫升_毫克,接着逐步衰弱.(2)服药5时,血液中含药量为每毫升_毫克.x/时y/毫克6325O263拓展提升(3)当x2时y与x之间的函数解析式是_.(4)当x2时y与x之间的函数解析式是_.(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是_时.y=3xy=-x+84x/时y/毫克6325O1.小明将父母给的零用钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内钱数y(元)与存钱月数x(月)之间的关系如图所示,根据下图回答下列问题:(1)求出y关于x的函数解析式.(2)根据关系式计算,小明经过几个月才能存够200元?4080120y/元元x/月月1 2 3 4 5o当堂练习当堂练习解:(1)设函数解析式为y=kxb,由图可知图象过(0,40),(4,120)这个函数的解析式为y=20 x+40.(2)当y=200时,20 x+40=200,解得x=8小明经过8个月才能存够200元解得4080120y/元元x/月月1 2 3 4 5o解:(1)由题意得当0t2时,T=20;当2t4时,T=20+5(t-2)=5t+10.函数解析式为:T=20(0t2)5t+10(2t4)2.一个试验室在0:002:00保持20的恒温,在2:004:00匀速升温,每小时升高5.写出试验室温度T(单位:)关于时间t(单位:h)的函数解析式,并画出函数图象.T=20(0t2)T=5t+10(250时,y与x的函数解析式;25 50 75 100255070100Oy(元)x(度)75解:当0 x50 时,由图象可设 y=k1x,其经过(50,25),代入得25=50k1,k1=0.5,y=0.5x;当x50时,由图象可设y=k2x+b,其经过(50,25)、(100,70),得k2=0.9,b=-20,y=0.9x-20.25 50 75 100255070100Oy(元)x(度)75根据你的分析:当每月用电量不超过50度时,收费标准是多少?当每月用电量超过50度时,收费标准是多少?解:不超过50度部分按0.5元/度计算,超过部分按0.9元/度计算.课堂小结课堂小结一次函数与实际问题一次函数与实际问题分段函数的解析式与图象导入新课讲授新课当堂练习课堂小结19.3 课题学习 选择方案第十九章 一次函数情境引入学习目标1会用一次函数知识解决方案选择问题,体会函数模型思想;(重点、难点)2能从不同的角度思考问题,优化解决问题的方法;3能进行解决问题过程的反思,总结解决问题的方法导入新课导入新课讲授新课讲授新课选择方案问题1怎样选取上网收费方式?收费方式月使用费/元包时上网时间/时超时费/(元/分)A30250.05B50500.05C120不限时下表给出A,B,C三种上宽带网的收费方式.1.哪种方式上网费是会变化的?哪种不变?A、B会变化,C不变2.在A、B两种方式中,上网费由哪些部分组成?上网费=月使用费+超时费3.影响超时费的变量是什么?上网时间4.这三种方式中有一定最优惠的方式吗?没有一定最优惠的方式,与上网的时间有关收费方式月使用费/元包时上网时间/时超时费/(元/分)A30250.05B50500.05C120不限时收费方式月使用费/元包时上网时间/时超时费/(元/分)A30250.05B50500.055.设月上网时间为x,则方式A、B的上网费y1、y2都是x的函数,要比较它们,需在x 0时,考虑何时(1)y1=y2;(2)y1 y2.收费方式月使用费/元包时上网时间/时超时费/(元/分)A30250.056.在方式A中,超时费一定会产生吗?什么情况下才会有超时费?不一定,只有在上网时间超过25小时时才会产生合起来可写为:当0 x25时,y1=30;当x25时,y1=30+0.0560(x-25)=3x-45.收费方式月使用费/元包时上网时间/时超时费/(元/分)A30250.05B50500.05C120不限时7.你能自己写出方式B的上网费y2关于上网时间x之间的函数关系式吗?方式C的上网费y3关于上网时间x之间的函数关系式呢?当x0时,y3=120.7.当上网时_时,选择方式A最省钱.当上网时间_时,选择方式B最省钱.当上网时间_时,选择方式C最省钱.在同一坐标系画出它们的图象:某移动公司对于移动话费推出两种收费方式:A方案:每月收取基本月租费15元,另收通话费为0.2元/分;B方案:零月租费,通话费为0.3元/分.(1)试写出A,B两种方案所付话费y(元)与通话时间t(分)之间的函数关系式;(2)在同一坐标系画出这两个函数的图象,并指出哪种付费方式合算?做一做解:(1)A方案:y1=15+0.2t(t0),B方案:y2=0.3t(t0).(2)这两个函数的图象如下:t(分)O501501001020y(元)503040y1=15+0.2ty1=0.3t观察图象,可知:当通话时间为150分时,选择A或B方案费用一样;当通话时间少于150分时,选择A方案费合算;当通话时间多于150分时,选择B方案合算.问题2怎样租车?某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师现有甲、乙两种大客车,它们的载客量和租金如表所示:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280问题1:租车的方案有哪几种?共三种:(1)单独租甲种车;(2)单独租乙种车;(3)甲种车和乙种车都租某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师现有甲、乙两种大客车,它们的载客量和租金如表所示:甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280问题2:如果单独租甲种车需要多少辆?乙种车呢?问题3:如果甲、乙都租,你能确定合租车辆的范围吗?汽车总数不能小于6辆,不能超过8辆.单独租甲种车要6辆,单独租乙种车要8辆.甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280问题4:要使6名教师至少在每辆车上有一名,你能确定排除哪种方案?你能确定租车的辆数吗?说明了车辆总数不会超过6辆,可以排除方案(2)单独租乙种车;所以租车的辆数只能为6辆问题5:在问题3中,合租甲、乙两种车的时候,又有很多种情况,面对这样的问题,我们怎样处理呢?方法1:分类讨论分3种情况;方法2:设租甲种车x辆,确定x的范围.(1)为使240名师生有车坐,可以确定x的一个范围吗?(2)为使租车费用不超过2300元,又可以确定x的范围吗?结合问题的实际意义,你能有几种不同的租车方案?为节省费用应选择其中的哪种方案?甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280 x 辆(6-x)辆设租用x 辆甲种客车,则租车费用y(单位:元)是x的函数,即怎样确定x的取值范围呢?甲种客车乙种客车载客量(单位:人/辆)4530租金(单位:元/辆)400280 x 辆(6-x)辆除了分别计算两种方案的租金外,还有其他选择方案的方法吗?由函数可知y 随x增大而增大,所以x=4时y最小.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.总结归纳例某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:型号AB成本(万元/台)200240售价(万元/台)250300(1)该厂对这两种型号挖掘机有几种生产方案?(2)该厂如何生产获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m0),该厂如何生产可以获得最大利润?(注:利润=售价-成本)分析:可用信息:A、B两种型号的挖掘机共100台;所筹生产资金不少于22400万元,但不超过22500万元;所筹资金全部用于生产,两种型号的挖掘机可全部售出.解:(1)设生产A型挖掘机x台,则B型挖掘机可生产(100-x)台,由题意知:(1)该厂对这两种型号挖掘机有几种生产方案?分析:设生产A型挖掘机x台,则B型挖掘机可生产(100-x)台,由题意得不等式组;有三种生产方案:A型38台,B型62台;A型39台,B型61台;A型40台,B型60台.解得37.5x40 x取正整数,x为38、39、40当x=38时,W最大=5620(万元),即生产A型38台,B型62台时,获得利润最大.(2)该厂如何生产获得最大利润?分析:利润与两种挖掘机的数量有关,因此可建立利润与挖掘机数量的函数关系式;W=50 x60(100 x)=10 x6000解:设获得利润为W(万元),由题意知:(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m0),该厂如何生产可以获得最大利润?当m10时,取x=40,W最大,即A型挖掘机生产40台,B型生产60台.分析:在(2)的基础上,售价改变,则应重新建立利润与挖掘机数量的函数关系式,并注意讨论m的取值范围.解:由题意知:W=(50m)x60(100 x)=(m10)x6000当0m10时,取x=38,W最大,即A型挖掘机生产38台,B型挖掘机生产62台;当m=10时,m-10=0,三种生产获得利润相等;做一做抗旱救灾行动中,江津、白沙两地要向中山和广兴每天输送饮用水,其中江津每天输出60车饮用水,白沙每天输出40车饮用水,供给中山和广兴各50车饮用水.由于距离不同,江津到中山需600元车,到广兴需700元车;白沙到中山需500元车,到广兴需650元车请你设计一个调运方案使总运费最低?此时总运费为多少元?广兴广兴50车车中山中山50车车江津江津60车车白沙白沙40车车(50)(60)650500700600解:设每天要从江津运车到中山,总运费为元由题意可得=600+700(60)+500(50)+650(10)y=50+60500(10)由得k500y随x的增大而增大当x10时,y有最小值,y=61000.答:从江津调往中山10车,从江津调往广兴50车,从白沙调往中山40车,从白沙调往广兴0车,可使总费用最省,为61000元1.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x_时,选用个体车较合算1500当堂练习当堂练习2如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象下列说法,其中正确的说法有(填序号)售2件时甲、乙两家售价一样;买1件时买乙家的合算;买3件时买甲家的合算;买1件时,售价约为3元.3.某单位有职工几十人,想在节假日期间组织到外地旅游.当地有甲、乙两家旅行社,它们服务质量基本相同,到此地旅游的价格都是每人100元.经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠.问该单位选择哪个旅行社,可使其支付的旅游总费用较少?解法一:设该单位参加旅游人数为x.那么选甲旅行社,应付费用80 x 元;选乙旅行社,应付(60 x+1000)元.记y1=80 x,y2=60 x+1000.在同一直角坐标系内作出两个函数的图象,y1与y2的图象交于点(50,4000).x人人50 60y元元800160032002400400048005600O10 20 30 407080 90y1=80 xy2=60 x+1000观察图象,可知:当人数为50时,选择甲或乙旅行社费用都一样;当人数为049人时,选择甲旅行社费用较少;当人数为51100人时,选择乙旅行社费用较少.x人人50 60y元元800160032002400400048005600O10 20 30 407080 90y1=80 xy2=60 x+1000解法二:(1)当y1=y2,即80 x=60 x+1000时,x=50.所以当人数为50时,选择甲或乙旅行社费用都一样;(2)当y1y2,即80 x60 x+1000时,得x50.所以当人数为51100人时,选择乙旅行社费用较少;(3)当y1y2,即80 x60 x+1000时,得x50.所以当人数为049人时,选择甲旅行社费用较少;解法三:设选择甲、乙旅行社费用之差为y,则y=y1-y2=80 x-(60 x+1000)=20 x-1000.画出一次函数y=20 x-1000的图象如下图.O204060-200-400-600-800-1000yxy=20 x-1000它与x轴交点为(50,0)由图可知:(1)当x=50时,y=0,即y1=y2;(2)当x50时,y0,即y1y2;(3)当x50时,y0,即y1y2.课堂小结课堂小结解决方案问题步骤:1.把实际问题转化为数学函数问题,列出函数关系式(建立数学模型).2.通过解不等式或画函数图象的方式确定自变量的范围.3.利用一次函数的增减性知识从而选择出最佳方案.