欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    复变函数与积分变换泰勒级数精选PPT.ppt

    • 资源ID:69935162       资源大小:855.50KB        全文页数:14页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复变函数与积分变换泰勒级数精选PPT.ppt

    复变函数与积分变换泰勒级数第1页,此课件共14页哦定理定理(泰勒展开定理)设 f(z)在区域D内解析,z0为D内的一点,d为z0到D的边界上各点的最短距离,则当|z-z0|d 时,第2页,此课件共14页哦设函数 f(z)在区域D内解析,而|z-z0|=r为D内以z0为中心的任何一个圆周,把它记作K,它与它的内部全含于D,又设z为K内任一点.z0Kzrz第3页,此课件共14页哦按柯西积分公式,有且z0Kzrz第4页,此课件共14页哦由解析函数高阶导数公式,上式可写成圆周K的半径可以任意增大,只要K在D内.所以,如果z0到D的边界上各点的最短距离为d,则 f(z)在z0的泰勒展开式在圆域|z-z0|d 内成立.z0Kzrz第5页,此课件共14页哦唯一性:任何解析函数展开成幂级数的结果就是泰勒级数.利用泰勒展开式,我们可以直接通过计算系数:把 f(z)在z0展开成幂级数,这被称作直接展开法。如第6页,此课件共14页哦例如,求 ez 在 z=0处的泰勒展开式,由于(ez)(n)=ez,(ez)(n)|z=0=1(n=0,1,2,.),故有因为ez在复平面内处处解析,上式在复平面内处处成立,收敛半径为+.同样,可求得sin z与cos z在z=0的泰勒展开式:第7页,此课件共14页哦除直接法外,也可以借助一些已知函数的展开式,利用幂级数的运算性质和分析性质,以唯一性为依据来得出一个函数的泰勒展开式,此方法称为间接展开法.例如sin z在z=0的泰勒展开式也可以用间接展开法得出:第8页,此课件共14页哦解 由于函数有一奇点z=-1,而在|z|1内处处解析,所以可在|z|1内展开成z的幂级数.因为 例1 把函数 展开成z的幂级数.第9页,此课件共14页哦例2 求对数函数的主值ln(1+z)在z=0处的幂级数展开式.解 ln(1+z)在从-1向左沿负实轴剪开的平面内是解析的,-1是它的奇点,所以可在|z|1展开为z的幂级数.-1OR=1xy第10页,此课件共14页哦第11页,此课件共14页哦第12页,此课件共14页哦注:第13页,此课件共14页哦而如果把函数中的x换成z,在复平面内来看函数1-z2+z4-它有两个奇点i,而这两个奇点都在此函数的展开式的收敛圆周上,所以这个级数的收敛半径只能等于1.因此,即使我们只关心z的实数值,但复平面上的奇点形成了限制.在实变函数中有些不易理解的问题,一到复变函数中就成为显然的事情,例如在实数范围内,展开式的成立必须受|x|1的限制,这一点往往使人难以理解,因为上式左端的函数对任何实数都是确定的而且是可导的.第14页,此课件共14页哦

    注意事项

    本文(复变函数与积分变换泰勒级数精选PPT.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开