(精品)18.1勾股定理.ppt
主讲人:崔正峰主讲人:崔正峰主讲人:崔正峰主讲人:崔正峰C CB BA A 相传相传2500年前,毕达哥拉斯有年前,毕达哥拉斯有一次在朋友家里做客时,发现朋一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直友家用砖铺成的地面中反映了直角三角形三边的某种数量关系角三角形三边的某种数量关系 我们也来观察我们也来观察右图中的地面,看右图中的地面,看看有什么发现?看有什么发现?数学家毕达哥拉斯的发现:数学家毕达哥拉斯的发现:正方形正方形A、B、C的面积有的面积有什么关系?什么关系?ABCA的面积的面积+B的面积的面积=C的面积的面积S SA A+S+SB B=S=SC C等腰直角三角形的三边有什么关系?等腰直角三角形的三边有什么关系?S SA A+S+SB B=S=SC CBCabcA问题问题1 设等腰直角三角形的三边长分别是设等腰直角三角形的三边长分别是a、b、ca a2 2+b+b2 2=c=c2 2 对于等腰直角三角形有这对于等腰直角三角形有这样的性质:样的性质:那么对于一般的直角三角形那么对于一般的直角三角形是否也有这样的性质呢?是否也有这样的性质呢?两直角边的平方和等于斜边的平方。两直角边的平方和等于斜边的平方。思思考考问题2在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):这两幅图中A,B的面积都好求,该怎样求C的面积呢?方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:右图:方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:右图:你还有其他办法求C的面积吗?根据前面求出的C的面积直接填出下表:A的面积B的面积C的面积左图右图4 1325916 9思考 正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?命题1 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.由上面的几个例子,我们猜想:abc下面动图形象的说明命题1的正确性,让我们跟着以前的数学家们用拼图法来证明这一猜想.abbc cabca证法1 让我们跟着我国汉代数学家赵爽拼图,再用所拼的图形证明命题吧.abcS大正方形c2,S小正方形(b-a)2,S大正方形4S三角形S小正方形,b-a证明:“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.因为,这个图案被选为2002年在北京召开的国际数学大会的会徽.证法1 让我们跟着我国汉代数学家赵爽拼图,再用所拼的图形证明命题吧.证法2 毕达哥拉斯证法,请先用手中的四个全等的直角三角形按图示进行拼图,然后分析其面积关系后证明吧.aaaabbbbcccca2+b2+2ab=c2+2ab,a2+b2=c2.证明:S大正方形=(a+b)2=a2+b2+2ab,S大正方形=4S直角三角形+S小正方形 =4 ab+c2 =c2+2ab,aabbcca2+b2=c2.证法3 美国第二十任总统伽菲尔德的“总统证法”.如图,图中的三个三角形都是直角三角形,求证:a2+b2=c2.在我国又称商高定理,在外国则叫毕达哥拉斯定理a、b、c为正数 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.u公式变形:u勾股定理abc归纳总结在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.勾股勾2+股2=弦2小贴士 例1 如图,在RtABC中,C=90.(1)若a=b=5,求c;(2)若a=1,c=2,求b.解:(1)据勾股定理得(2)据勾股定理得 利用勾股定理进行计算二CAB练一练 求下列图中未知数x、y的值:解:由勾股定理可得 81+144=x2,解得x=15.解:由勾股定理可得 y2+144=169,解得 y=5当堂练习当堂练习1.下列说法中,正确的是 ()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在RtABC中,C=90,所以a2+b2=c2D.在RtABC中,B=90,所以a2+b2=c2C2.图中阴影部分是一个正方形,则此正方形的面积为 .8 cm10 cm36 cm课堂小结课堂小结勾股定理内容在RtABC中,C=90,a,b为直角边,c为斜边,则有a2+b2=c2.注意在直角三角形中看清哪个角是直角已知两边没有指明是直角边还是斜边时一定要分类讨论 已知ACB=90,CDAB,AC=3,BC=4.求CD的长.ADBC34作业:能力提升