(精品)24.1圆 (5).ppt
24.1 圆的有关性质第二十四章 圆 优优 翼翼 课课 件件 学练优九年级数学上(RJ)教学课件24.1.1 圆导入新课讲授新课当堂练习课堂小结1.认识圆,理解圆的本质属性.(重点)2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等 弧等与圆有关的概念,并了解它们之间的区别和联系.(难点)3.初步了解点与圆的位置关系.学习目标导入新课导入新课观察与思考问题 观察下列生活中的图片,找一找你所熟悉的图形.rOAu圆的旋转定义 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆以点O为圆心的圆,记作“O”,读作“圆”.u有关概念固定的端点O叫做圆心,线段OA叫做半径,一般用r表示 讲授新课讲授新课探究圆的概念一问题 观察画圆的过程,你能说出圆是如何画出来的吗?一是圆心,圆心确定其位置;二是半径,半径确定其大小同心圆 等圆 半径相同,圆心不同圆心相同,半径不同想一想:1.以1cm为半径能画几个圆,以点O为圆心能画几个圆?无数个圆无数个圆u确定一个圆的要素2.如何画一个确定的圆?(1)圆上各点到定点(圆心O)的距离都等于 (2)到定点的距离等于定长的点都在 圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合O ACErrrrrD定长r同一个圆上u圆的集合定义问题 从画圆的过程可以看出什么呢?要点归纳o同圆半径相等.典例精析例1 矩形ABCD的对角线AC、BD相交于O.求证:A、B、C、D在以O为圆心的同一圆上.ABCDO证明:四边形ABCD是矩形,AO=OC,OB=OD.又AC=BD,OA=OB=OC=OD.A、B、C、D在以O为圆心以OA为半径的圆上.u弦:COAB连接圆上任意两点的线段(如图中的AC)叫做弦.经过圆心的弦(如图中的AB)叫做直径 1.弦和直径都是线段.2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.注意圆的有关概念二u弧:COAB圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆劣弧与优弧 COAB半圆圆上任意两点间的部分叫做圆弧,简弧以A、B为端点的弧记作 AB ,读作“圆弧AB”或“弧AB”(小于半圆的弧叫做劣弧.如图中的AC ;(大于半圆的弧叫做优弧.如图中的ABC.(u等圆:COA 能够重合的两个圆叫做等圆.CO1A容易看出:等圆是两个半径相等的圆.u等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.想一想:长度相等的弧是等弧吗?A AB BC CD D观察AD和和BC是否相等?O O例2 如图.(1)请写出以点A为端点的优弧及劣弧;(2)请写出以点A为端点的弦及直径.典例精析弦AF,AB,AC.其中弦AB又是直径.(3)请任选一条弦,写出这条弦所对的弧.答案不唯一,如:弦AF,它所对的弧是 .ABCEFDO劣弧:优弧:AF,(AD,(AC,(AE.(AFE,(AFC,(ADE,(ADC.(AF(要点归纳1.根据圆的定义,“圆”指的是“圆周”,而不是“圆面”2.直径是圆中最长的弦.p附图解释:COAB连接OC,在AOC中,根据三角形三边关系有AO+OCAC,而AB=2OA,AO=OC,所以ABAC.1.填空:(1)_是圆中最长的弦,它是_的2倍(2)图中有 条直径,条非直径的弦,圆中以A为一个端点的优弧有 条,劣弧有 条 直径半径一二四四2.一点和O上的最近点距离为4cm,最远的距离为10cm,则这个圆的半径是 .7cm或3cm当堂练习当堂练习ABCDOFE3.判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)长度相等的弧是等弧.4 一些学生正在做投圈游戏,他们呈“一”字排开这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?不公平,应该站成圆形.5 一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域 5m5mO4m5mO4m参考答案:圆定 义旋 转 定 义要画一个确定的圆,关 键 是确定圆心和半径集 合 定 义同圆半径相等有关概念弦(直径)直径是圆中最 长 的 弦弧半圆是特殊的弧劣 弧半 圆优 弧同心圆等圆同圆等弧能够互相重合的两段弧课堂小结课堂小结见学练优本课时练习课后作业课后作业