欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    弹性力学平面问题精选PPT.ppt

    • 资源ID:69948969       资源大小:2.25MB        全文页数:25页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    弹性力学平面问题精选PPT.ppt

    弹性力学平面问题弹性力学平面问题第1页,此课件共25页哦2023/1/122第2页,此课件共25页哦第二章第二章 平面问题平面问题 基本理论基本理论第3页,此课件共25页哦2023/1/124第4页,此课件共25页哦主主 要要 内内 容容2-1 2-1 平面应力问题与平面应变问题平面应力问题与平面应变问题2-2 2-2 平衡微分方程平衡微分方程2-3 2-3 斜面上的应力斜面上的应力 主应力主应力2-4 2-4 几何方程几何方程 刚体位移刚体位移 2-5 2-5 物理方程物理方程2-6 2-6 边界条件边界条件2-7 2-7 圣维南原理圣维南原理2-8 2-8 按位移求解平面问题按位移求解平面问题2-9 2-9 按应力求解平面问题按应力求解平面问题 相容方程相容方程2-10 2-10 常体力情况下的简化常体力情况下的简化斜方向的应变及位移斜方向的应变及位移第5页,此课件共25页哦2023/1/126第6页,此课件共25页哦2023/1/127第7页,此课件共25页哦xyyztba(1)平面应力问题平面应力问题如图选取坐标系,以板的中面为如图选取坐标系,以板的中面为xy 平平面,垂直于中面的任一直线为面,垂直于中面的任一直线为 z 轴。轴。由于板面上不受力,有由于板面上不受力,有因板很薄,且外力沿因板很薄,且外力沿 z 轴方向不变。轴方向不变。可认为可认为整个薄板的各点整个薄板的各点都都有:有:由剪应力互等定理,有由剪应力互等定理,有第8页,此课件共25页哦平面应力问题只有三个应力分量平面应力问题只有三个应力分量:xy应变分量、位移分量也仅为应变分量、位移分量也仅为 x、y 的函数,与的函数,与 z 无关。无关。第9页,此课件共25页哦2、平面应变问题、平面应变问题(1)几何特征几何特征水坝水坝滚柱滚柱厚壁圆筒厚壁圆筒 一个方向的尺寸比一个方向的尺寸比另两个方向的尺寸大得多,另两个方向的尺寸大得多,且沿长度方向几何形状和且沿长度方向几何形状和尺寸不变化。尺寸不变化。近似认为无限长近似认为无限长(2)外力特征外力特征 外力(体力、面力)平行于横截面作外力(体力、面力)平行于横截面作用,且沿长度用,且沿长度 z 方向不变化。方向不变化。约束约束 沿长度沿长度 z 方向不变化。方向不变化。第10页,此课件共25页哦2.、平面应变问题平面应变问题水坝水坝滚柱滚柱厚壁圆筒厚壁圆筒(3)变形特征变形特征 如图建立坐标系:以任一横截面为如图建立坐标系:以任一横截面为 xy 面,任一纵线为面,任一纵线为 z 轴。轴。设设 z方向为无限长,则方向为无限长,则沿沿 z 方向都不变化,方向都不变化,仅为仅为 x,y 的函数。的函数。任一横截面均可视为对称面任一横截面均可视为对称面第11页,此课件共25页哦水坝水坝因为任一横截面均可视为对称面,则有因为任一横截面均可视为对称面,则有所有各点的位移矢量都平行于所有各点的位移矢量都平行于 x y 平面。平面。平面位移问题平面位移问题 平面应变问题平面应变问题注:注:(1)平面应变问题中平面应变问题中但是,但是,(2)平面应变问题中应力分量:平面应变问题中应力分量:仅为仅为 x y 的函数。的函数。可近似为平面应变问题的例子:可近似为平面应变问题的例子:煤矿巷道的变形与破坏分析;挡土墙;重力坝等。煤矿巷道的变形与破坏分析;挡土墙;重力坝等。第12页,此课件共25页哦 如图所示三种情形,是否都属平面问题?是平面应力问题如图所示三种情形,是否都属平面问题?是平面应力问题还是平面应变问题?还是平面应变问题?非平面问题非平面问题第13页,此课件共25页哦3、平面问题的求解、平面问题的求解问题:问题:已知:外力(体力、面力)、边界条件,已知:外力(体力、面力)、边界条件,求:求:仅为仅为 x y 的函数的函数需建立三个方面的关系:需建立三个方面的关系:(1)静力学关系:)静力学关系:(2)几何学关系:)几何学关系:(3)物理学关系:)物理学关系:形变形变与与应力应力间的关系。间的关系。应力应力与与体力、面力体力、面力间的关系;间的关系;形变形变与与位移位移间的关系;间的关系;建立边界条件:建立边界条件:平衡微分方程平衡微分方程 几何方程几何方程 物理方程物理方程(1)应力边界条件;)应力边界条件;(2)位移边界条件;)位移边界条件;第14页,此课件共25页哦两类平面问题:两类平面问题:平面应力问题平面应力问题平面应变问题平面应变问题几何特征几何特征受力特征受力特征应力应力特征特征几何特征几何特征;受力特征受力特征;应变应变特征。特征。第15页,此课件共25页哦2023/1/1216第16页,此课件共25页哦BACPxyO取微元体取微元体PABC(P点附近点附近),),DfxfyZ 方向取单位长度。方向取单位长度。设设P点应力已知:点应力已知:体力:体力:fx,fyPP第17页,此课件共25页哦PBACxyO取微元体取微元体PABC(P点附近点附近),),DfxfyZ 方向取单位长度。方向取单位长度。设设P点应力已知:点应力已知:体力:体力:fx,fyAC面:面:BC面:面:注:注:这里两次用了小变形假定,以变形前的尺这里两次用了小变形假定,以变形前的尺寸代替变形后尺寸,并且?寸代替变形后尺寸,并且?第18页,此课件共25页哦PBACxyODfxfy由微元体由微元体PABC平衡,得平衡,得整理得:整理得:当当时,有时,有 剪应力互等定理剪应力互等定理第19页,此课件共25页哦两边同除以两边同除以dx dy,并整理得:,并整理得:两边同除以两边同除以dx dy,并整理得:,并整理得:PBACxyODfxfy第20页,此课件共25页哦平面问题的平衡微分方程:平面问题的平衡微分方程:(2-2)说明:说明:(1)两个平衡微分方程,三个未知量:)两个平衡微分方程,三个未知量:超静定问题,需找补充方程才能求解。超静定问题,需找补充方程才能求解。(2)对于平面应变问题,)对于平面应变问题,x、y方向的平衡方程相同,方向的平衡方程相同,z方向方向自成平衡,上述方程自成平衡,上述方程两类平面问题均适用两类平面问题均适用;(3)平衡方程中不含)平衡方程中不含E、,方程与材料性质无关方程与材料性质无关(钢、(钢、石料、混凝土等);石料、混凝土等);(4)平衡方程对)平衡方程对整个弹性体内都满足整个弹性体内都满足,包括边界。,包括边界。PBACxyODfxfy第21页,此课件共25页哦2023/1/1222第22页,此课件共25页哦2023/1/1223第23页,此课件共25页哦2023/1/1224第24页,此课件共25页哦2023/1/1225第25页,此课件共25页哦

    注意事项

    本文(弹性力学平面问题精选PPT.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开