欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    圆锥曲线最值问题.doc

    • 资源ID:69952142       资源大小:384.01KB        全文页数:7页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    圆锥曲线最值问题.doc

    高考中圆锥曲线最值问题求解方法 圆锥曲线最值问题是高考中的一类常见问题,体现了圆锥曲线与三角、函数、不等式、方程、平面向量等代数知识之间的横向联系。解此类问题与解代数中的最值问题方法类似,。由于圆锥曲线的最值问题与曲线有关,所以利用曲线性质求解是其特有的方法。下面介绍几种常见求解方法。主要类型:(1)两条线段最值问题。(2)圆锥曲线上点到某条直线的距离的最值。(3)圆锥曲线上点到轴(轴)上某定点的距离的最值。(4)求几何图形面积的最值等。一、 定义法 根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等,这是求圆锥曲线最值问题的基本方法。有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。例1、已知抛物线 ,定点A(3,1),F 是抛物线的焦点 ,在抛物线上求一点 P,使|AP|+|PF|取最小值 ,并求的最小值 。分析:由点A引准线的垂线,垂足Q,则 |AP|+|PF|=|AP|+|PQ|, 即为最小值。OF(1,0) xA(3,1)y Q P解: 如图,, 焦点F(1,0) 。 由点A引准线x= -1的垂线 ,垂足Q,则 |AP|+|PF|=|AP|+|PQ|, 即为最小值. . 由, 得 为所求点. 若另取一点 , 显然 。点悟 利用圆锥曲线性质求最值是一种特殊方法。在利用时技巧性较强,但可以避繁就简,化难为易。又如已知圆锥曲线内一点A与其上一动点P,求 的最值时,常考虑圆锥曲线第二定义。例2、已知点F是双曲线 的左焦点,定点A(1,4),P是双曲线右支上动点,则 的最小值为_.解:例3、已知椭圆的右焦点F,且有定点,又点是椭圆上一动点。问是否有最值,若有,求出最值并指出点的坐标例4、已知点为抛物线上的点,那么点到点的距离与点到抛物线焦点的距离之和的最小值为 _ _,此时点坐标为 _.二、 参数法 利用椭圆、双曲线参数方程转化为三角函数问题,或利用直线、抛物线参数方程转化为函数问题求解。例1、椭圆的切线 与两坐标轴分别交于两点 , 求三角形的最小面积 。分析;写出椭圆参数方程,设切点为,可得切线方程。 解: 设切点为 , 则切线方程为 .令y=0, 得切线与x轴交点;令,得切线与y轴交点= 点悟 利用圆锥曲线参数方程转化为求三角函数的最值问题,再利用三角函数的有界性得出结果。 三 、二次函数法 函数法就是把所求最值的目标表示为关于某个变量的函数,通过研究这个函数求最值,是求各类最值最为普遍的方法.(关键:建立函数关系式,注意变量的定义域)。例1、过动直线与定直线的交点(其中)的等轴双曲线系中 , 当为何值时,达到最大值与最小值?分析:求出交点坐标代入双曲线,可得的二次函数表达式,再利用函数方法求解。解:由 , 得 交点,将交点坐标代入双曲线,= =.当 , ,又 ,;当p=3a时, 点悟 把所求的最值表示为函数,再寻求函数在给定区间上的最值,但要注意函数的定义域。例2、点分别是椭圆的长轴的左右端点,F为右焦点,在椭圆上,位于轴的上方,且若为椭圆长轴上一点,到直线的距离等于.求椭圆上点到点的距离的最小值.分析:把所求距离表示为椭圆上点的横坐标的函数,然后求这个函数的最小值。解:由已知可得点、,设点,则由(1)(2)及得 的方程为设,则点到直线AP的距离设椭圆上点到距离为则四 、几何法 将圆锥曲线问题转化为平面几何问题,再利用平面几何知识,如对称点、三角形三边关系、平行间距离(切线法:当所求的最值是圆锥曲线上点到某条直线的距离的最值时,可以通过作与这条直线平行的圆锥曲线的切线,则两平行线间的距离就是所求的最值,切点就是曲线上去的最值时的点。)等求解。例1、 已知椭圆 和直线 ,在l上取一点 ,经过点且以椭圆的焦点为焦点作椭圆 ,求在何处时所作椭圆的长轴最短,并求此椭圆方程 。分析;设是关于l对称点,可求出坐标,过的直线方程与联立得交点M为所求。y lP O xM解 :由椭圆方程 ,得, 设 是关于l对称点 , 可求出 坐标为(-9,6) , 过的直线方程:x+2y-3=0与x-y+9=0联立,得交点M(-5,4), 即过M的椭圆长轴最短。由 ,得,, 所求椭圆方程为 .点悟 :在求圆锥曲线最值问题中,如果用代数方法求解比较复杂,可考虑用几何知识求解,其中“三角形两边之和大于第三边”是求最值常用的定理。同时,利用平几知识求解,蕴涵了数形结合的思想。 五、不等式法 基本不等式法先将所求最值的量用变量表示出来,再利用均值不等式“等号成立”的条件求解。.这种方法是求圆锥曲线中最值问题应用最为广泛的一种方法.例5 、过椭圆的焦点的直线交椭圆A,B两点 ,求面积的最大值 。分析:由过椭圆焦点,写出直线AB方程为y=kx+1,与椭圆方程联立,消去y,得关于x的一元二次方程,巧妙的利用根与系数的关系,可以起到避繁就简的效果。 解 : 椭圆焦点 ,设过焦点,直线方程为 与联立 ,消去, 得 , 其中两根为横坐标 。 将三角形看作与组合而成 , 是公共边 ,它们在公共边上的高长为 ., 其中 =. 当 即时,取等号 ,即当直线为 时 , 得到的面积最大值为 。例2、设椭圆中心在坐标原点是它的两个顶点,直线与椭圆交于两点,求四边形面积的最大值.解: 依题意设得椭圆标准方程为 直线AB、EF的方程分别为 设根据点到直线距离公式及上式,点E、F到AB的距离分别为四边形AFBE的面积为当且仅当点悟 利用均值不等式求最值,有时要用“配凑法”,这种方法是一种技巧。在利用均值不等式时,要注意满足三个条件:1、每一项要取正值;2、不等式的一边为常数;3、等号能够成立。其中正确应用 “等号成立”的条件是这种方法关键。 圆锥曲线最值问题涉及知识较多,在求解时,要多思考、多联系,合理进行转化,以优化解题方法。7

    注意事项

    本文(圆锥曲线最值问题.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开