麻醉学:血流动力学监测课件.ppt
血流动力学监测Hemodynamic monitoring主要内容血流动力学的基本概念监测技术各种压力波形的识别及分析临床应用血流动力学监测的基本概念定义血流动力学血流动力学 血液流动的物理学血液流动的物理学,血流动力学监测血流动力学监测 对影响循环系统的物理学因素的监测及解释对影响循环系统的物理学因素的监测及解释物理概念流量(流量(Q Q)压力(压力(P P)阻力(阻力(R R)物理概念压力(P)=流量(Q)阻力(R)P P:CVPCVP、LAP/PAWPLAP/PAWP、MPAPMPAP、MAPMAPQ Q:COCOR R:SVRSVR、PVRPVR容量与压力的关系阻力与压力的关系阻力与管径的关系生理概念血压=血液流速(心输出量)循环阻力循环系统是一个连续、相对封闭的管道系统产生血液流动的压力梯度来自于心脏运动产生的压力梯度血管管径能够主动地发生变化神经内分泌活动神经内分泌活动肾素肾素-血管紧张素血管紧张素-醛固酮系统醛固酮系统Intravascular volumeMyocardial contraction and heart rateVasoactivity4 factors that affecting the haemodynamic conditions常用压力监测项目CVP/RAPCVP/RAPLAP/PAWPLAP/PAWPABPABPPAPPAP心脏功能的影响及其调节因素频率/节律前负荷后负荷收缩力血流动力学监测血流动力学监测COMAPSVR=xSVHRx后负荷后负荷前负荷前负荷心肌收缩力心肌收缩力前负荷 定义:心肌纤维在收缩定义:心肌纤维在收缩前的张力前的张力 决定因素:决定因素:LVEDV/LVEDPLVEDV/LVEDP StarlingStarling定律:定律:心肌收缩产生的能量是心心肌收缩产生的能量是心肌纤维初长度的函数肌纤维初长度的函数 心肌收缩力与心肌纤维收心肌收缩力与心肌纤维收缩的初长度呈正相关缩的初长度呈正相关心输出量CO=HRSV4-8 L/min4-8 L/minSV 60-80 mlSV 60-80 ml心输出量不等于心肌收缩力SV的影响因素:前负荷前负荷后负荷后负荷收缩力收缩力后负荷定义:抵抗心脏排血的压力或阻力影响因素:血管内径及血液粘滞性血管内径及血液粘滞性阻力(R=P/Q):SVR=(MAP-RAP)/CO 80SVR=(MAP-RAP)/CO 80PVR=(MPAP-LAP)/CO 80PVR=(MPAP-LAP)/CO 80心肌收缩力迄今为止,有关心肌收缩力的监测大多是间接实现的射血分数(Ejection Fraction)一定程度上反映心肌收缩功能一定程度上反映心肌收缩功能不反映心肌的舒张功能不反映心肌的舒张功能SvO2监测监测部位:肺动脉影响因素:COCO、SaOSaO2 2、HgbHgb、VOVO2 2意义:反映机体组织水平的氧输送及摄合平衡反映机体组织水平的氧输送及摄合平衡 60%60%用于计算氧输送(DO2)及摄取(VO2)氧代谢公式氧含量:CaOCaO2 2=HbHb 1.36 1.36 SaOSaO2 2+0.003 +0.003 PaOPaO2 2CvOCvO2 2=Hb =Hb 1.36 1.36 SvOSvO2 2+0.003 +0.003 PvOPvO2 2氧输送:DODO2 2=CO =CO CaO CaO2 2氧摄取:VOVO2 2=CO =CO (CaO(CaO2 2-CvO-CvO2 2)影响SvO2的因素动脉血氧饱和度(SaO2)心输出量血红蛋白组织氧摄取能力常用公式及参考范围常用氧代谢参数及参考范围不同休克的变化模式血流动力学监测技术血流动力学监测组成换能器换能器 将物理信号(如压力、温度、光)转换为电信号将物理信号(如压力、温度、光)转换为电信号放大器放大器 汇集电信号,通过电缆传递给显示设备汇集电信号,通过电缆传递给显示设备显示器显示器管道及冲洗系统管道及冲洗系统 保持通畅保持通畅 压力袋压力袋 肝素肝素Old equipmentsArterial lineReal time SBP,DBP,MAPPulse pressure variation(PP)PP(%)=100 (PPmax-PPmin)/(PPmax+PPmin/2)=13%(in septic pts,)discriminate between fluid responder and non respondaer(sensitivity 94%,specificity 96%)Am J Respir Crit Care Med 2000,162:134-138 Arterial lineAdvantagesEasy setupReal time BP monitoringBeat to beat waveform displayAllow regular sampling of blood for lab testsDisadvantagesInvasiveRisk of haematoma,distal ischemia,pseudoaneurysm formation and infection动脉压监测适应症持续血压监测需要多次抽血动脉测压部位桡动脉、肱动脉、股动脉Allens test:同时压迫桡、尺动脉同时压迫桡、尺动脉不断抓握动作直至手指发白不断抓握动作直至手指发白放开尺动脉放开尺动脉肢端色泽在肢端色泽在5-75-7秒恢复秒恢复Allens test护理注意事项波形变化与无创血压对照管道连接检查肢端循环、活动及感觉正确设定报警系统(10 to 20mmHg)穿刺部位固定,防止渗血、血肿正确的动脉压波形快速上升快速上升 收缩期开始收缩期开始重搏切迹重搏切迹 主动脉瓣关闭主动脉瓣关闭 收缩结束收缩结束&舒张期开舒张期开始始舒张末期舒张末期 波形最低点波形最低点中心静脉穿刺锁骨下静脉穿刺呼吸影响自主呼吸时,吸气时自主呼吸时,吸气时胸腔及心包压力下降胸腔及心包压力下降CVPCVP随之下降(但实随之下降(但实际的跨壁压力可能上际的跨壁压力可能上升)升)机械通气时的变化与机械通气时的变化与之相反。之相反。呼吸末胸腔及心包压呼吸末胸腔及心包压力接近于大气压力接近于大气压中心静脉导管定位静脉导管位置异常静脉导管位置异常静脉导管位置异常前负荷的维持:指南建议复苏目标(1C)中心静脉压(CVP)8 12 mmHg*平均动脉压 65 mmHg尿量 0.5 ml/kg/hr中心静脉(上腔静脉)血氧饱和度 70%,或混合静脉血氧饱和度 65%容量负荷试验:判断标准每10分钟测定CVPCVP 2 mmHg继续快速补液CVP 2 5 mmHg暂停快速补液,等待10分钟后再次评估CVP 5 mmHg停止快速补液每10分钟测定PAWPPAWP 3 mmHg继续快速补液PAWP 3 7 mmHg暂停快速补液,等待10分钟后再次评估PAWP 7 mmHg停止快速补液Pulmonary arterial catheterIndications for PAP monitoringShock of all typesAssessment of cardiovascular function and response to therapyAssessment of pulmonary statusAssessment of fluid requirementPerioperative monitoringClinical applications of PACPAC can generate large numbers of haemodynamic variablesCentral venous pressure(CVP)Pulmonary arterial occlusion pressure(PAOP)Cardiac output/cardiac index(CO/CI)Stroke volume(SV)R ventricle ejection fraction/end diatolic volume(RVEF/RVEDV)Systemic vascular resistance index(SVRI)Pulmonary vascular resistance index(PVRI)Oxygen delivery/uptake(DO2/VO2)=LAP=LVEDP By thermodilutionSwan-Ganz导管结构Swan-Ganz导管放置1区、2区、3区Swan-Ganz导管放置漂浮导管放置心输出量-热稀释法经右房端口于4秒内注入5-10cc冰盐水导管顶部感应温度变化计算机自动计算出CO至少3次测量的平均值(差异10%)Swan-Ganz导管定位Swan-Ganz的异常位置Swan-GanzSwan-Ganz导管位置导管位置异常极其常见,发生异常极其常见,发生率可达率可达25%25%。Swan-Ganz的异常位置Swan-Ganz导管并发症导管打结导管打结气囊破裂气囊破裂瓣膜损伤瓣膜损伤血小板减少症血小板减少症心动过缓心动过缓血栓形成血栓形成导管移位导管移位Patient with hypotensionHypovolemia Low CVP Low CI High SVRI Consider fluid challenge Cardiogenic High CVP Low CI High SVRI Consider inotopic/IABPVasogenic Low CVP High CI Low SVRI Consider vasopressor Mixed Venous Saturation SvO2Measured in pulmonary artery bloodMarker of the balance between whole body O2 delivery(DO2)and O2 consumption(VO2)VO2=DO2*(SaO2 SvO2)In fact,DO2 determinate by CO,Hb and SaO2.Therefore,SvO2 affected byCOHbArterial oxygen saturationTissue oxygen consumptionMixed Venous Saturation SvO2Normal SvO2 70-75%Decreased SvO2 increased consumption pain,hyperthermia decreased delivery low CO anemia hypoxiaIncreased SvO2 Increased delivery high CO hyperbaric O2 Low consumption sedation paralysis cyanide toxicityPACAdvantagesProvide lot of important haemodynamic parametersSampling site for SvO2DisadvantagesCostlyInvasiveMultiple complications(eg arrhythmia,catheter looping,balloon rupture,PA injury,pulmonary infarction etc)Mortality not reduced and can be even higherCrit Care Med 2003;31:2734-2741JAMA 1996;276 889-897Advance in haemodynamic assessmentModification of old equipmentEchocardiogram and esophageal dopplerPulse contour analysis and transpulmonary thermodilutionPartial carbon dioxide rebreathing with application of Fick principleElectrical bioimpedancetruCCOMS system As CO increase,blood flow over the heat transfer device increase and the device require more power to keep the temp.differenceTherefore,provide continuous CO dataObjectiveTocomparemeasurementsofcardiacoutputusinganewpulmonaryarterycatheterwiththoseobtainedusingtwogoldstandardmethods:theperiaortictransittimeultrasonicflowprobeandtheconventionalpulmonaryarterythermodilution.DesignProspectiveclinicaltrial.SettingCardiacsurgeryoperatingroomandsurgicalICUinauniversityhospital.MaterialandmethodsIntheoperatingroom,anewpulmonaryarterycatheter(truCCOMSsystem)wasinsertedineightpatients.Aperiaorticflowprobewasinsertedinfourofthem.MeasurementsofcardiacoutputobtainedwiththetruCCOMScatheterandwiththeflowprobewerecomparedatdifferentphasesofthesurgicalprocedure.Intheintensivecareunit,thecardiacoutputdisplayedbythetruCCOMSmonitorwascomparedwiththevalueobtainedafterbolusinjectionperformedsubsequently.ResultsIntheoperatingroom(70measurements),thecoefficientofcorrelationbetweencardiacoutputmeasuredbytheflowprobeandthetruCCOMSsystemwasr2=0.79,thebiaswas+0.11l/minwithaprecisionof0.47l/min,andlimitsofagreement0.83to+1.05l/min.Intheintensivecareunit(108measurements),thecoefficientofcorrelationbetweencardiacoutputmeasuredbythermodilutionandthetruCCOMSsystemwasr2=0.56,thebiaswas0.07l/min,theprecisionwas0.66l/min,andthelimitsofagreementwere1.39to+1.25l/min.ConclusionThetruCCOMSsystemisareliablemethodofcontinuouscardiacoutputmeasurementincardiacsurgerypatients.TruCCOMS systemAdvantageContinuous CO monitoringProvision of important haemodynamic parameter as PACDisadvantageInvasiveCostlyComplications associated with PAC useTransthoracic echoAssessment of cardiac structure,ejection fraction and cardiac outputBased on 2D and doppler flow techniqueEcho doppler ultrasoundMeasure blood flow velocity in heart and great vesselsBased on Doppler effect “Sound freq.increases as a sound source moves toward the observer and decreases as the soure moves away”For transthoracic echoHaemodynamic assessment for SV and COFlow rate=CSA x flow velocityBecause flow velocity varies during ejection,individual velocities of the doppler spectrum need to be summedSum of velocities called velocity time integral(VTI)SV=CSA x VTI CSA=(LVOT Diameter/2)2*Therefore SV=D2*0.785*VTICO=SV*HRTransthoracic echoAdvantagesFast to performNon invasiveCan assess valvular structure and myocardial functionNo added equipment neededDisadvantagesDifficult to get good view(esp whose on ventilator/obese)Cannot provide continuous monitoringTransesophageal echoCO assessment by Simpson or doppler flow technique as mentioned beforeBetter view and more accurate than TTETime consuming and require a high level of operator skills and knowledgeEsophageal aortic doppler USDoppler assessment of decending aortic flowCO determinate by measuring aortic blood flow and aortic CSAAssuming a constant partition between caudal and cephalic blood supply areasCSA obtain either from nomograms or by M-mode USProbe is smaller than that for TEECorrelate well with CO measured by thermodilutionCrit Care Med 1998 Dec;26(12):2066-72 Decending aortaNormovolemiaEsophageal aortic doppler USAdvantagesEasy placement,minimal training needed(12 cases)provide continuous,real-time monitoring Low incidence of iatrogenic complicationsMinimal infective riskDisadvantagesHigh costPoor tolerance at awake patient,so for those intubatedProbe displacement can occur during prolonged monitoring and patients turningHigh interobserver variability when measuring changes in SV in response to fluid challenges Pulse contour analysisArterial pressure waveform determinate by interaction of stroke volume and SVRPulse contour analysisBecause vascular impedance varies between patients,it had to be measured using another modality to initially calibrate the PCA systemThe calibration method usually employed was arterial thermodilution or dye dilution techniquePCA involves the use of an arterially placed catheter with a pressure transducer,which can measure pressure tracings on a beat-to-beat basisPiCCO and LiDCO are the two commonly used modelWhat is the PiCCO-Technology?Pulse Contour AnalysisCV Bolus injectionPULSIOCATHCALIBRATION Transpulmonary ThermodilutioninjectiontTPt The PiCCO-Technology is a unique combination of 2 techniques for advanced hemodynamic and volumetric management without the necessity of a right heart catheter in most patients:Thermodilution Parameters Cardiac OutputCO Global End-Diastolic Volume GEDV Intrathoracic Blood Volume ITBV Extravascular Lung WaterEVLW*Pulmonary Vascular Permeability Index PVPI*Cardiac Function IndexCFI Global Ejection FractionGEFThe PiCCO measures the following parameters:Pulse Contour Parameters Pulse Contour Cardiac OutputPCCO Arterial Blood PressureAP Heart RateHR Stroke VolumeSV Stroke Volume VariationSVV Pulse Pressure VariationPPV Systemic Vascular ResistanceSVR Index of Left Ventricular ContractilitydPmx*Parameters measured with the PiCCO-Technology Most of hemodynamic unstable and/or severely hypoxemic patients are instrumented with:The PiCCO-Technology uses any standard CV-line and a thermistor-tipped arterial PiCCO-catheter instead of the standard arterial line.Central venous line(e.g.for vasoactive agents administration)3How does the PiCCO-Technology work?Arterial line (accurate monitoring of arterial pressure,blood samples)CVABFRPiCCO Catheter Central venous line(CV)PULSIOCATH thermodilution catheter with lumen for arterial pressure measurementAxillary:4F (1,4mm)8cmBrachial:4F (1,4mm)22cm Femoral:3-5F(0,9-1,7mm)7-20cm Radial:4F (1,4mm)50cmNo Right Heart Catheter!Bolus Injection LungsPiCCO Catheter e.g.in femoral artery Transpulmonary thermodilution measurement only requires central venous injection of a cold (8C)or room-tempered (3.0700850700700850700850ELWI*(ml/kg)GEDI(ml/m2)or ITBI(ml/m2)CFI(1/min)or GEF(%)101010101010V+V+!V+!V+CatCatOK!V-700850700-800850-10004.5255.5304.525 700-800 850-1000Cat5.530700850 700-800 850-1000 700-800 850-1000 10 10 10 10V-V+=volume loading(!=cautiously)V-=volume contractionCat=catecholamine/cardiovascular agents*SVV only applicable in ventilated patients without cardiac arrhythmia700850 10Optimise to SVV*(%)101010RESULTSTARGETTHERAPY1.2.10101010LiDCO systemPulse contour analysisAdvantagesAlmost continuous data of CO/SV/SV variationProvide information of preload and EVLWDisadvantagesMinimal invasiveOptimal arterial pulse signal requiredArrhythmiaDampingUse of IABPPartial carbon dioxide rebreathing with application of Fick principleFick principle is used for CO measurementCO=VO2/(CaO2 CvO2)=VCO2/(CvCO2 CaCO2)Based on the assumption that blood flow through the pulmonary circulation kept constant and absence of shuntProportional to change of CO2 elimination divided by change of ETCO2 resulting from a brief rebreathing periodThe change was measured by NICO sensorS=slope of CO2 dissociation curveassume that the mixed venous co2 concentration(Cvco2)remains unchanged between baseline and rebreathing conditionsPartial carbon dioxide rebreathing with application of Fick principleAdvantagesNon invasiveDisadvantagesOnly for those mechanically ventilated patientVariation of ventilation modality and presence of significantly diseased lung affect the CO readingNot continuous monitoringElectrical bioimpedanceMade uses of constant electrical current stimulation for identification of thoracic or body impedance variations induced by vascular blood flow Electrodes are placed in specific areas on the neck and thorax A low-grade electrical current,from 2-4 mA is emitted,and received by the adjacent electrodes Impedance to the current flow produces a waveform Through electronic evaluation of these waveforms,the timing of aortic opening and closing can be used to calculate the left ventricular ejection time and stroke volume Electrical bioimpedanceSome report same clinical accuracy as thermodilution techniqueCrit Care Med 22:1907-1912Chest 111:333-337Crit Care Med 14:933-935Other report poor agreement in those haemodynamically unstable and post cardiac surgeryCrit Care Med 21:1139-1142Crit Care Med 23:1667-1673Newly generation EB device using upgraded computer technology and refined algorithms to calculate CO and get better resultsCurr Opin Cardio 19:229-237Int Care Med 32:2053-2058Electrical bioimpedanceAdvantageNon invasiveDisadvantageReliability in critically ill patients still not very clearIn conclusionHaemodynamic monitoring enable early detection of change in patients conditionsNew techniques provide reasonably good results and less invasiveAlways correlate the readings/findings with clinical pictures in order to provide the best treatment options 压力波形的识别及分析动脉压力波形1-1-收缩压收缩压2-2-重搏切迹重搏切迹3-3-舒张压舒张压中心静脉压(RAP/CVP)参考范围:参考范围:5 5-1010 cmHcmH2 2O O波形成份:波形成份:a-a-右房收缩右房收缩 c-c-三尖瓣三尖瓣关闭关闭 v-v-心房充盈心房充盈 y-y-三尖瓣三尖瓣开放开放 z-z-最接近右心室舒张最接近右心室舒张末压(末压(RVEDPRVEDP)中心静脉波形a a:出现于:出现于P P波后,相波后,相当于右心室舒张末;当于右心室舒张末;c c:出现于:出现于QRSQRS波后;波后;v v:T T波之后波之后a-atriala-atrialc-contractionc-contractionv-venousv-venous右心室压力低压系统正常收缩压=20-30mmHg正常舒张压=2-8 mmHg(近似于右房压)(近似于右房压)右心室波形1-1-等容收缩期等容收缩期2-2-快速射血期快速射血期3-3-减慢射血期减慢射血期4-4-等容舒张期等容舒张期5-5-舒张早期舒张早期6-6-心房收缩(心房收缩(a a波)波)7-7-舒张末期舒张末期肺动脉压波形低压系统低压系统正常收缩压正常收缩压 =20-30=20-30 mmHg(=Sys RV)mmHg(=Sys RV)正常舒张压正常舒张压 =8-15=8-15 mmHg(PAD)mmHg(PAD)降支出现重搏切迹降支出现重搏切迹肺动脉瓣关闭肺动脉瓣关闭肺动脉压力波形1-1-收缩压收缩压2-2-重搏切迹重搏切迹3-3-舒张压舒张压肺动脉压波形PAWP充气时间PAWP 1-4 mmHgPAD PAWP 1-4 mmHg2.PAD/PAWP2.PAD/PAWP差异增大差异增大 PVRPVR增加增加 血流增加血流增加 心率增加心率增加PAWP波形1-a波2-x降支3-v波4-y降支PAWP-PAP1-a波2-c波3-v波4-收缩压5-舒张压5757男性,发热、腹痛男性,发热、腹痛3636小时小时腹部平片:膈下游离气体腹部平片:膈下游离气体剖腹探查:乙状结肠憩室破裂剖腹探查:乙状结肠憩室破裂既往既往史:特发性心肌病史:特发性心肌病BP 70/40BP 70/40CVP 4CVP 4PA 17/9PA 17/9CO 1.9CO 1.9SVR 1800SVR 1800 a)a)去去甲肾上腺素甲肾上腺素 b)b)硝酸甘油硝酸甘油c)c)多巴酚丁胺多巴酚丁胺d)d)扩容扩容e)e)限制液体摄入限制液体摄入20002000ml/hml/hBP 80/45BP 80/45CVP 22CVP 22PA 35/17PA 35/17CO 2.1CO 2.1SVR 1400SVR 1400a)alphaa)alpha激动剂激动剂 b)b)再次给予液体负荷再次给予液体负荷c)c)可能是感染性休克可能是感染性休克d)d)可能是心功能衰竭可能是心功能