2023年七年级数学上册 1.2.4绝对值教案1 人教新课标版.docx
-
资源ID:70057810
资源大小:21.81KB
全文页数:21页
- 资源格式: DOCX
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023年七年级数学上册 1.2.4绝对值教案1 人教新课标版.docx
2023年七年级数学上册 1.2.4绝对值教案1 人教新课标版 第一篇:七年级数学上册 1.2.4确定值教案1 人教新课标版 人教版七年级第一章其次节 确定值(一) 一学问技能 1.使学生驾驭有理数的确定值概念及表示方法.2.使学生娴熟驾驭有理数确定值的求法和有关计算问题.二过程方法 1.在确定值概念形成的过程中,渗透数形结合等思想方法,并留意培育学生的概括实力.2.能根据一个数的确定值表示“距离,初步理解确定值的概念.3.给出一个数,能求它的确定值.三情感看法 从上节课学的相反数到本节的确定值,使学生感知数学学问具有普遍的联系性.教学重点 给出一个数会求它的确定值.教学难点 确定值的几何意义,代数定义的导出;负数的确定值是它的相反数. 问题:两辆汽车,第一辆沿公路向东行驶了5千米,其次辆向西行驶了4千米为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米这样,利用有理数就可以明确表示每辆汽车在公路上的位置了 我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的确定值,4叫做-4的确定值 1确定值的定义: 我们把在数轴上表示数a的点与原点的距离叫做数a的确定值).记作|a|.例如,在数轴上表示数6与表示数6的点与原点的距离都是6,所以6和6的确定值都是6,记作|6|=|6|=6.同样可知|4|=4,|+1.7|=1.7.2试一试:你能从中觉察什么规律? 由确定值的意义,我们可以知道:(1)|+2|=,15=,|+8.2|= ;(2)|0|= ; (3)|3|=,|0.2|=,|8.2|=.概括:通过对具体数的确定值的探讨,并留意视察在原点右边的点表示的数正数的确定值有什么特点?在原点左边的点表示的数负数的确定值又有什么特点?由学生分类探讨,归纳出数a的确定值的一般规律:1一个正数的确定值是它本身;20的确定值是0; 3一个负数的确定值是它的相反数.即:若a0,则|a|=a; ìa(a>0)ïa=í0(a=0)若a0,则|a|=a; 或写成:.ï-a(a<0)î若a=0,则|a|=0; 3确定值的非负性 由确定值的定义可知:不管有理数a取何值,它的确定值总是正数或0(通常也称非负数),确定值具有非负性,即|a|0.4例题解析 例1:求以下各数的确定值:-7,解:-71=7;+212121,4.75,10.5.10110=1;|4.75|=4.75;|10.5|=10.5.1011ö例2: 化简:(1)-æç+÷÷;(2)-1.çè2ø=31ö1解:(1)-æçç+1÷÷=-è2ø212;(2)-113=-113.3|2| 3例3:计算:1|0.32|+|0.3|; 2.3 2|4.2|4.2|; 分析:求一个数的确定值必需先推断这个数是正数还是负数,然后由确定值的性质得到.在3中要留意区分确定值符号与括号的不同含义.解答:10.62;20;3.43 解:|8|=8,|-8|=8,|1111|=,|=,|0|=0,|6p|=6p,|p5|=5p 4444例5.,求x.分析:此题应用了确定值的一个基本性质:互为相反数的两个数的确定值相等.即或解:或或,由此可求出正确答案 或 .补充:一对相反数的确定值相等. 1.在括号里填写适当的数: -|+3|=; |=1,|=0;-|=-2 121,-8.3,0,+0.01,-,1的确定值.35233.1确定值是的数有几个?各是什么? 42.求+7,-2,(2)确定值是0的数有几个?各是什么?(3)有没有确定值是-2的数?4求确定值小于4的全部整数.4.计算: (1)|-15|-|-6|;(2)|-0.24|+|-5.06|;(3)|-3|×|-2|;(4)|+4|×|-5|;(3)|-12|÷|+2|;(6)|20|÷|- 1| 25检查了5个排球的重量单位:克,其中超过标准重量记为正数,缺乏的记为负数,结果如下: 3.5,0.7,2.5,0.6.其中哪个球的重量最接近标准? 参考答案: 1.3.5 11-5-3 ±1 0 ±2 211|=,|-8.3|=8.3,332211|=,|1|=1 55222.|+7|=7,|-2|=2,|0|=0,|+0.01|=0.01,|-3.12个,33和-21个,03没有 4440,-1,1,-2,2,-3,3 4.(1)9;(2)5.3;(3)6;(4)20;(3)6;(6)40 5.|3.5| > |2.5| > |0.7| > |0.6| 第4个排球最接近标准. 确定值是中学数学中一个特殊重要的概念,它具有非负性,在数学中有着广泛的应用.本节从几何与代数的角度阐述确定值的概念,重点是让学生驾驭求一个已知数的确定值,对确定值的几何意义、代数定义的导出、对“负数的确定值是它的相反数的理解是教学中的难点.课堂上留给学生确定的提问时间,很简洁暴露学生学问的缺陷,通过问题引导学生联想,大胆猜测,可以拓宽学生的学问面,增加学问的系统性,加深对课本学问的理解,培育学生的创新意识和发散思维.老师在课堂上也往往能收到意想不到的收获. 其次篇:七年级数学上册1.2.4确定值教案(新版)新人教版(新)模版 确定值 教学目标: 1、驾驭确定值的概念,会求一个有理数的确定值 2、会用确定值比较两个或多个有理数的大小 3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想 教学重点: 1.给出一个数会求它的确定值。2.利用数轴和确定值比较有理数的大小。教学难点:确定值的几何意义;利用确定值和数轴比较两个负数的大小。教学过程: 一、创设问题情境,引入新课 活动1:两辆汽车从同一处O动身,分别向东、向西方向行驶10千米,到达A、B两处如图,它们行驶路程的远近线段OA、OB的长度相同吗? 它们行驶的路程都是10千米.老师指出:A、B两点到原点O的距离,就是我们这节课要学习的A、B两点所表示的有理数的确定值。 二、讲授新课: 探究一:确定值的定义 活动2:借助于数轴给出确定值的定义: 一般地,数轴上表示数a的点与原点的距离叫做数a的确定值,记作a。 注:这里a可以是正数,也可以是负数和0.例如:在问题1的问题中,A、B两点分别表示10和一10,它们与原点的距离都是10个单位长度,所以10和一10的确定值都是10,即10=10,-10=10。明显,0=0。 因为点A、B表示的数互为相反数,且它们的确定值相等,因此我们可得出:互为相反数的两个数的确定值相等.活动3:在数轴上表示出以下各数,并求出它们的确定值。-2,1.5,0,7,-3.5,5 解:依题意得:数轴可表示为: 如下图数轴上的A、B、O、C、D、E分别表示-2,1.5,0,7,-3.5,5 |-2|=2,|1.5|=1.5,|0|=0,|7|=7,|-3.5|=3.5,|5|=5 根据此题的结果我们可归纳总结正数的确定值、负数的确定值、0的确定值各有的特点,因此可得出 确定值的性质: 一个正数的确定值是它本身;一个负数的确定值是它的相反数;0的确定值是0.代数表示数学语言是:字母a可个有理数。(1)当a是正数时,a= a ;(2)当a是负数时,a=-a ;(3)当a是0时,a= 0.活动4:例1:求 + 8、- 12、- 3、+ 3、1.6的确定值 解:|+8|=8 ;|-12|=12 ; |-3|= 3; |+3|= 3 ;-1.6=1.6.思索:求一个有理数的确定值的方法: 1.利用数轴去求一个数的确定值; 2.只需知道这个数是正数、负数还是0,利用确定值的性质即可求出一个数的确定值。活动5:跟踪练习: 写出以下各数的确定值: 6,-8,-3.9,52,-,100,0 211解:6=6,-8=8,-3.9=3.9,=,-525222=,100=100,0=01111.推断以下说法是否正确: 符号相反的数互为相反数; 一个数的确定值越大,表示它的点在数轴上越靠右; 3一个数的确定值越大,表示它的点在数轴上离原点越远; a4当a0时,总是大于0.答案:1错2错3对4对.推断以下各式是否正确: 5=-512-5=-53 -5=-5.答案:1对2错3错 探究二:有理数的比较大小。活动6:视察下列图给出的一周中每天的最高气温顺最低气温,其中最低的是-4 ,最高的是 9 ,你能将这14个温度按从低到高的依次排列吗? 学生将上图中的14个温度按从你到高排列为: 一4,一3,一2,一1,0,1,2,3,4,5,6,7,8,9.数学中规定:在数轴上表示有理数,它们从左到右的依次就是从小到大的依次,即左边的数小于右边的数。由这个规定可以比较上述各数如一4和一3,一2和0,一1和1的大小。一4-2,即-1>-+2; 83883399838-=,-=,>,->-,-21所以21>7。2因为2121772121217-1111-=,-33因为-0.3=0.3,330.3-5;2-3>-5;3-2.5-4.2.比较以下各组数的大小1-45与-34213,-12,-|-13|,0 解:1|-45|=45=1620,|-34|=3154=20,因为1620>154320,所以-5 -4; 2因为-|-13|=-13>-12,所以 13 0-|-113|-2 课堂小结:这节课我们学习了哪些学问? 数轴上表示数a的点与原点的距离叫做数a的确定值。(1)假如a0,那么|a|a(2)假如a0,那么|a|a(3)假如a0,那么|a|0.互为相反数的两个数的确定值相等.4.在数轴上表示有理数,它们从左到右的依次就是从小到大的依次,即左边的数小于右边的数。5.1正数大于0,也大于负数,0大于负数。2两个负数比较大小,确定值大的反而小。课后作业: 课本P 14习题1.2 的第5、6、7题。 第三篇:1.2.4确定值学案-人教版七年级上册数学 教学方案 年级:七年级 学科:数学 第一章有理数 第2小节 第4课时 累计 课时 主备老师: 上课老师: 审批领导: 授课时间: *年*月*日 课 题 1.2.4 确定值 教学目标 1.理解确定值的几何意义和代数意义; 2.会求一个数的确定值,知道一个数的确定值,会求这个数; 3.会比较两个有理数的大小。 重点难点 重点:给出一个数,会求它的确定值;运用有理数大小比较法则,借助数轴比较两个有理数的大小。 难点:理解确定值的几何意义;利用确定值比较两个负数的大小。 法制渗透 中考链接 在中考中常考填空题或选择题 一、激趣导入 星期天黄老师从学校动身,开车去游玩,她先向东行20千米,到金清,下午她又向西行30千米,回到家中(学校、金清、家在同始终线上),假如规定向东为正,用有理数表示黄老师两次所行的路程;假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升? (小组探讨,沟通合作,动手操作) 二、预习共享 接受老师抽查或小组互查的方法检查学生的预习状况: 1.确定值的概念.2.有理数的大小应怎样比较? 三、合作探究 探究1: 有理数的确定值 通过上面问题可知,实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关切汽车行驶的距离和汽油的价格,而与行驶的方向无关; 视察并思索:画一条数轴,原点表示学校,在数轴上画出表示金清和黄老师家的点,视察图形,说出金清和黄老师家与学校的距离 老师点评: 数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关; 一般地,数轴上表示数a的点与原点的距离叫做数a的确定值,记做 探究2:确定值的性质 学生探讨: 计算:=_,=_; =_,=_;=_.你能从上面的题目中觉察什么规律吗? 老师点评: 一个正数的确定值是它本身,一个负数的确定值是它的相反数,0的确定值是0.探究2:有理数的大小比较 1正数大于0,0大于负数; 2两个负数,确定值大的反而小。 四、目标检测 1、确定值等于它本身的数是,确定值等于它的相反数的数是 . 2、说出以下各数的确定值: +23,0, 3、若则; 若则 ;若则_.4、若是有理数,则确定是 A.是正数 B.非正数 C.是负数 D.非负数 五、小结 本节课你学到了什么?还有哪些怀疑? 1.有理数的确定值 2.确定值的性质 3.有理数的大小比较 六、稳固目标 作业:课本P14 第5题 七、支配下节预习 预习课本P11至P13“1.3.1 有理数的加法并回答: 1.有理数加法的意义.2.能用有理数加法法则进行有理数的加法运算。 修订看法 反思 第四篇:1.2.4 确定值教案 1.2.4 确定值教案 以下是查字典数学网为您举荐的1.2.4 确定值教案,盼望本篇文章对您学习有所关心。 1.2.4 确定值 教学目标1,驾驭确定值的概念,有理数大小比较法则.2,学会确定值的计算,会比较两个或多个有理数的大小.3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.教学难点两个负数大小的比较 学问重点确定值的概念 教学过程(师生活动)设计理念 设置情境 引入课题星期天黄老师从学校动身,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同始终线上),假如规定向东为正,用有理数表示黄老师两次所行的路程;假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升? 学生思索后,老师作如下说明: 实际生活中有些问题只关注量的具体值,而与相反 意义无关,即正负性无关,如汽车的耗油量我们只关切汽车行驶的距离和汽油的价格,而与行驶的方向无关; 视察并思索:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,视察图形,说出朱家尖黄老师家与学校的距离.学生回答后,老师说明如下: 数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的确定值,记做|a| 例如,上面的问题中|20|=20,|-10|=10明显,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入确定值概念做准备.使学生体验数学学问与生活实际的联系.因为确定值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此视察与思索,为建立确定值概念作准备.合作沟通 探究规律例1求以下各数的确定值,并归纳求有理数a的确定 有什么规律?、-3,5,0,+58,0.6 要求小组探讨,合作学习.老师引导学生利用确定值的意义先求出答案,然后视察原数与它的确定值这两个数据的特征,并结合相反数的意义,最终总结得出求确定值法则(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法则干脆写出答案,是求确定值的基本训练;第2题是对相反数和确定值概念进行区分,对学生的分析、推断实力有较高要求,要留意思索的周密性,要让学生体会出不同说法之间的区分.求一个数的绝时值的法则,可看做是确定值概念的一个应用,所以支配此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个探讨.结合实际觉察新知引导学生看教科书第16页的图,并回答相关问题: 把14个气温从低到高排列;把这14个数用数轴上的点表示出来; 视察并思索:视察这些点在数轴上的位置,并思索它们与温度的凹凸之间的关系,由此你觉得两个有理数可以比较大小吗? 应怎样比较两个数的大小呢? 学生沟通后,老师总结: 14个数从左到右的依次就是温度从低到高的依次: 在数轴上表示有理数,它们从左到右的依次就是从小到大的依次,即左边的数小于右边的数.在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则 想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的确定值)以及这两个数的大小之间的关系.要求学生在头脑中有清晰的图形.让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。 数在大小比较法则第2点学生较难驾驭,要从确定值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。 课堂练习例2,比较以下各数的大小(教科书第17页例) 比较大小的过程要紧扣法则进行,留意书写格式 练习:第18页练习 小结与作业 课堂小结怎样求一个数的确定值,怎样比较有理数的大小? 本课作业1,必做题:教产书第19页习题1,2,第4,5,6,10 2,选做题:老师自行支配 本课教化评注(课堂设计理念,实际教学效果及改良设想) 1,情景的创设出于如下考虑:表达数学学问与生活实际的紧密联系,让学生在这些熟识的日常生活情境中获得数学体验,不仅加深对确定值的理解,更感受到学习确定值概念的必要性和激发学习的爱好.教材中数的确定值概念是根据几何意义来定义的(其本质是将数转化为形来说明,是难点),然后通过练习归纳出求有理数的确定值的规律,假如干脆给出确定值的概念,灌输学问的味道很浓,且太抽象,学生不易接受.2,一个数确定值的法则,事实上是确定值概念的干脆应用,也表达着分类的数学思想,所以干脆通过例1归纳得出,显得特殊紧凑,是教学重点;从学问的进展和学生的实力培育角度来看,老师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。 3,有理数大小的比较法则是大小规定的干脆归纳,其中第(2)条学生较难理解,教学中要结合确定值的意义和规定:在数轴上表示有理数,它们从左到右的依次就是从小到大的依次,关心学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型.为此设置了想象练习.4,本节课的内容包括确定值的概念和数的确定值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。 附板书: 1.2.4 确定值 第五篇:1.2.4确定值教案专题 124 确定值 1学问与技能 初步理解确定值的意义,驾驭确定值的概念,会求有理数的确定值。 会比较两个有理数的大小 2过程与方法 阅历解决问题的过程,初步了解数形结合、分类探讨思想的思想方法。3情感、看法与价值观 培育学生主动探究,敢于实践的精神,以及认真、严谨的学习品质。 增加学生学习数学的爱好,树立学好数学的信念。 重点:理解确定值的概念,能求一个数的确定值。 难点:会比较两个负数的大小。 一创设情境,导入新课 问题1 两只蚂蚁搬运东西从同一处O点动身,分别向东、西方向爬行了10m,到达A,B两处。你能画出数轴表示它们的位置吗? 老师活动:学生小组探讨解决问题的方法,学生代表画图演示。学生画图后提问: 1它们爬行的路途相同吗?线路不同2它们爬行的路程相同吗?路程相同 问题2 上面的问题中,我们知道,-10与+10是一对相反数。那你能在刚刚画出来的数轴上标出-3和-3的相反数的位置吗? 老师活动:学生画图表示后提问: 1像-10与+10,-3与+3这样的一对数有什么特点? 老师活动: 总结,它们是一对相反数,符号不同,与原点的距离相同。假如我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是10,我们就把这个距离叫做+10和10的确定值。即+10的确定值是10,-10的确定值是10。这就是我们今日要学习的确定值。 问题313的确定值是什么? 2+3的确定值是什么?引导学生口答 二定义、辨析确定值概念 1.确定值的概念 数a的确定值是数轴上表示数a的点与原点的距离,数a的确定值是记作|a|。练习1 你能说出以下各数的确定值吗? 6,-25,-4.5,0.2,0 34由确定值的定义可知:一个正数的确定值是它本身,一个负数的确定值是它的相反数,0的确定值是0,即: 假如a>0,那么|a|=a; 假如a=0,那么|a|=0; 假如a<0,那么|a|=-a.2.有理数比较大小 练习2 下列图中是世界五个国家一周的天气预报 1你能将纽约的四天中每天的最低气温按从低到高的依次排序吗?2<3<4<6)2你能将星期一中五个国家的最低气温从低到高的依次排序吗?建议画出数轴来比较大小。-8<-6<5<6<17) 1正数大于0,0大于负数,正数大于负数;2两个负数,确定值大的反而小。 比较以下各对数的大小: 13和-52-3和-53-2.5和-|-2.25|4-33和- 54三练习、稳固概念 1.例题填空: 1确定值等于4的数有 2 个,它们是 ±4 2确定值等于-3的数有 0 个 3确定值等于本身的数有 多数 个,它们是 0 和正数非负数 4若a=2,则a= ±2 若-a=3,则a= ±3 5确定值不大于2的整数是 0,±1,±2 2.以下各数中,不成立的是A.|-3|=3 B.-|3|=-3 C.|-3|=|3| D.-|-3|=3 3.某年我国人均水资源比上年的增幅是-5.6%,后续三年各年比上年的增幅分别是-4.0%,13.0%,-9.6%。这些增幅中哪个最小?增幅是负数说明什么? 四小结 老师与学生一起回顾本节课所学主要内容,并请学生回答一下问题:1本节课学了哪些主要内容? 2正数的确定值是它本身,负数的确定值是它的相反数,0的确定值是0,3两个负数如何比较大小? 五布置作业 书P14 5、6、7 优化设计P7-8