欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    1[1]31函数的单调性与导数1.ppt

    • 资源ID:70288822       资源大小:1.56MB        全文页数:28页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1[1]31函数的单调性与导数1.ppt

    17 17 一月一月 2023 2023冷水江一中冷水江一中 孙祝梧孙祝梧复习引入复习引入:问题问题1 1:怎样利用函数单调性的定义怎样利用函数单调性的定义来讨论其在定义域的单调性来讨论其在定义域的单调性1 1一般地,对于给定区间上的函数一般地,对于给定区间上的函数f(x)f(x),如,如果对于属于这个区间的任意两个自变量的值果对于属于这个区间的任意两个自变量的值x x1 1,x x2 2,当,当x x1 1xx2 2时,时,(1)(1)若若f(xf(x1 1)f(x)f(x2),那么,那么f(x)在这个区间在这个区间 上是上是减函数减函数此时此时x1-x2与与f(x1)-f(x2)异号异号,即即(2)(2)作差作差f(xf(x1 1)f(xf(x2 2),并,并变形变形.2 2由定义证明函数的单调性的一般步骤:由定义证明函数的单调性的一般步骤:(1)(1)设设x x1 1、x x2 2是给定区间的任意两个是给定区间的任意两个值,且值,且x x1 1 x x2 2.(3)(3)判断判断差的符号差的符号(与比较与比较),从而,从而得函数的单调性得函数的单调性.例例1:讨论函数讨论函数y=x24x3的单调性的单调性.解:取解:取x x1 1xx2 2RR,f(xf(x1 1)f(xf(x2 2)=)=(x x1 12 24x4x1 13 3)()(x x2 22 24x4x2 23 3)=(x x1 1+x+x2 2)(x)(x1 1x x2 2)-4(x-4(x1 1x x2 2)=(x=(x1 1x x2 2)(x)(x1 1+x+x2 24 4)则当则当x x1 1xx2 222时,时,x x1 1+x+x2 2404f(x)f(x2 2),那么那么 y=f(x)y=f(x)单调递减。单调递减。当当2x2x1 1x040,f(xf(x1 1)f(x)0f(x)0,注意注意:如果在如果在某个区间内某个区间内恒有恒有f(x)=0,f(x)=0,则则f(x)f(x)为常数函数为常数函数.如果如果f(x)0f(x)0,-12x0,解得解得x0 x2x2,则则f(x)的单增区间为(的单增区间为(,0 0)和)和(2 2,).再令再令6 6x2-12x0,-12x0,解得解得0 x2,0 x0时时,解得解得 x0.则函数的单增区间为则函数的单增区间为(0,+).当当ex-10时时,解得解得x0,f(x)0,得函数单增区间得函数单增区间;解不等式解不等式f(x)0,f(x)0 (B)(A)a0 (B)1a1 1a1 (D)0a1 (D)0a1 A AB B再见再见

    注意事项

    本文(1[1]31函数的单调性与导数1.ppt)为本站会员(hyn****60)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开