数学1复习(第1课时).ppt
必修复必修复 习习第一课时第一课时第一章第一章 集合集合与函数概念与函数概念第二章第二章 基本基本初等函数初等函数第三章第三章 函数应用函数应用集合知识结构集合知识结构集合集合基本关系基本关系含义与表示含义与表示基本运算基本运算列举法列举法 描述法描述法包含包含相等相等并集并集交集交集 补集补集图示法图示法 一、集合的含义与表示1、集合:把研究对象称为元素,把一些元素组成的总体叫做集合2、元素与集合的关系:3、元素的特性:确定性、互异性、无序性确定性、互异性、无序性(一)集合的含义(二)集合的表示1、列举法:把集合中的元素一一列举出来,并放在 内2、描述法:用文字或公式等描述出元素的特性,并放在x|内3.图示法 Venn图二、集合间的基本关系1、子集:对于两个集合A,B如果集合A中的任何一个元素都是集合B的元素,我们称A为B的子集.若集合中元素有n个,则其子集个数为 真子集个数为 非空真子集个数为2、集合相等:3、空集:规定空集是任何集合的子集,是任何非空集合的真子集2n2n-12n-2三、集合的并集、交集、全集、补集全集:某集合含有我们所研究的各个集合的全部元素,用U表示AB0或或2题型示例考查集合的含义考查集合之间的关系考查集合的运算123453返回返回-12kkkk函数函数函数的概念函数的概念函数的基本性质函数的基本性质函数的单调性函数的单调性函数的最值函数的最值函数的奇偶性函数的奇偶性函数知识结构函数知识结构 一、函数的概念:一、函数的概念:思考:函数值域与集合B的关系例例7 求下列函数的定义域求下列函数的定义域(一)函数的定义域(一)函数的定义域1、具体函数的定义域、具体函数的定义域1)已知函数)已知函数y=f(x)的定义域是的定义域是1,3,求求f(2x-1)的定义域的定义域2)已知函数)已知函数y=f(x)的定义域是的定义域是0,5),求求g(x)=f(x-1)-f(x+1)的定义域的定义域2、抽象函数的定义域、抽象函数的定义域(二)二次函数给定区间值域问题二、函数的表示法二、函数的表示法1、解解 析析 法法 2、列列 表表 法法 3、图图 像像 法法 例例10(3)1 (4)4.映射的概念设A,B是两个非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y于之对应,那么就称对应f:AB为集合A到集合B的一个映射映射是函数的一种推广,本质是:任一对唯一增函数、减函数、单调函数是增函数、减函数、单调函数是 对定义域上的某个区间而言的。对定义域上的某个区间而言的。三、函数单调性三、函数单调性定义:一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量x1、x2,当x1x2时,都有f(x1)f(x2),那么就说函数在区间上是增函数。区间D叫做函数的增区间。如果对于定义域I内某个区间D上的任意两个自变量x1、x2,当x1f(x2),那么就说函数在区间上是减函数。区间D叫做函数的减区间。用定义证明函数单调性的步骤用定义证明函数单调性的步骤:(1)设元,设设元,设x1,x2是区间上任意两个实数,且是区间上任意两个实数,且x1x2;(2)作差,作差,f(x1)f(x2);(3)变形,通过因式分解转化为易于判断符号的形式变形,通过因式分解转化为易于判断符号的形式(4)判号,判号,判断判断 f(x1)f(x2)的符号;的符号;(5)下结论下结论.【例例】写出常见函数的写出常见函数的写出常见函数的写出常见函数的单调区间单调区间单调区间单调区间并指明是并指明是并指明是并指明是增增增增区间还是区间还是区间还是区间还是减减减减区间区间区间区间2、函数y=ax+b(a0)的单调区间是3、函数y=ax2+bx+c(a0)的单调区间是、函数 的单调区间是 1.函数函数f(x)=2x+1,(x1)x,(x1)则则f(x)的递减区间为的递减区间为()A.1,)B.(,1)C.(0,)D.(,0B2、若函数、若函数f(x)=x2+2(a-1)x+2在区间在区间4,+)上是增函数上是增函数,则实数则实数a的取值范围是的取值范围是()你知道函你知道函数的最数的最值吗?值吗?四、函数的奇偶性四、函数的奇偶性1.奇函数:对任意的 ,都有2.偶函数:对任意的 ,都有3.奇函数和偶函数的必要条件:注注:要判断函数的奇偶性要判断函数的奇偶性,首先首先要看其定要看其定义域区间是否关于原点对称义域区间是否关于原点对称!定义域关于原点对称定义域关于原点对称.奇奇(偶偶)函数的一些特征函数的一些特征1.若函数f(x)是奇函数,且在x=0处有定义,则f(0)=0.2.奇函数图像关于原点对称,且在对称的区间上不改变单调性.3.偶函数图像关于y轴对称,且在对称的区间上改变单调性例12 判断下列函数的奇偶性