欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    理论物理基础教程 刘连寿 答案.ppt

    • 资源ID:70320750       资源大小:1.07MB        全文页数:48页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    理论物理基础教程 刘连寿 答案.ppt

    分析力学作业讲解分析力学作业讲解第一章 低速宏观运动的基本原理包括1 2 3 4 9 10 11 12题1.设质点在势能场U(r)中运动,在笛卡尔坐标系中写出其拉格朗日方程。解:拉格朗日方程为:L为拉格朗日函数笛卡尔坐标中的坐标变量为 ,那么所以,带入那格朗日方程得到带入拉格朗日方程即有这就是笛卡尔坐标系中的拉格朗日方程。2.已知柱坐标 与笛卡尔坐标的关系是如图1设质点在轴对称势能场 中运动,写出其那格朗日方程。解:由柱坐标和笛卡尔坐标的关系可知等式两边同时除以dt那么,系统的动能为那么,系统的拉格朗日为所以带入拉格朗日方程,则有:3.长度为l的细绳系一小球,悬挂点按照 方式运动,如图所示,小球被限制在 平面内运动,时悬线竖直向下。4.(a)求悬线和竖直线偏离 所对应的虚位移5.(b)已知在这一时刻的角速度为,求经过 时间后的位移 。问:当 时,与 有何差别?(a)在任意时刻,约束所容许的位移为虚位移,途中的小球,受到细绳的和自身重力的约束,在这个时刻,解:小球只能围绕O点作圆周运动,当偏离角为 时,对应的虚位移为 。(b)小球经过 时间后的位移,可以看作有两部分组成:(1)小球绕O点作圆周运动所产生的位移(2)小球随O点一起作简谐运动所产生的位移所以,小球的位移为 和 的区别如图所示:虚位移和实际位移的主要区别在于虚位移之和约束有关。实际位移除了和约束有关以外,还和物体当前的运动状态有关。长度同为l 的轻棒四根,相互连接成一个可以无摩擦的改变顶角的菱形ABCD,AB和AD两棒无摩擦的支于处于同一水平线上且相距2a的两根钉上,BD之间用一根轻质棒连接,在连接点(B和D处),各棒之间可以无摩擦的转动,C点上系有一重物W,C点和重物受到约束,只能上下运动,设A点两棒之间的夹角为 ,试用虚功原理求平衡时联结棒BD中的张力 ,讨论的 方向与 的大小的关系。问:在什么情况下有 ,说明其意义。4.虚功原理解:我们考虑当A处的夹角增加 ,只有B、D和C处的约束力的虚功不为零。那么:利用近似方法 可得:将上面的近似式代入虚功方程可得:即有:杠对B的作用力向外杠对B的作用力向内杠对B无作用力9质量为M的斜面可以无摩擦地在水平桌面上滑动。斜面上无摩擦地放一滑块 m,如图所示。写出拉格朗日方程,并求斜面的加速度 和滑块相对于斜面的加速度 。解:系统的拉格朗日函数为即有:解之得:带入拉氏方程:10直接用拉格朗日方程 1.1.2(2.21)式 证明,由相差一广义坐标和时间的函数的时间全导数的两个拉格朗日函数L 和L 1.1.3(3.13)式 得到的运动方程相同。证明:L和L相差一个广义坐标和时间的全微分那么带入拉格朗日方程那么由L 和L 得到的运动方程相同。经过伽利略有限速度变换 的拉氏量为11证明一维运动自由质点的拉格朗日函数 1.1.4(4.10)式 满足有限相对速度变换下伽利略相对性原理的要求。解:由(4.10)可得自由质点的拉格朗日函数为L 和L相差一广义坐标和时间的函数的时间全导数的两个拉格朗日函数,由上题知,他们满足相同的拉格朗日方程。所以自由质点的拉格朗日函数(4.10)式 满足有限相对速度变换下伽利略相对性原理的要求。注意:解决此类问题的关键是弄懂题意,在作业中我发现很注意:解决此类问题的关键是弄懂题意,在作业中我发现很多同学没有弄清题目要求证明什么。要证明拉格朗日函数满多同学没有弄清题目要求证明什么。要证明拉格朗日函数满足有限相对速度变换下伽利略相对性原理的要求。就要先搞足有限相对速度变换下伽利略相对性原理的要求。就要先搞清楚什么是伽利略相对性原理:所有惯性系,对研究机械运清楚什么是伽利略相对性原理:所有惯性系,对研究机械运动规律是等效的。那么我们要证明的是在两个惯性系中,拉动规律是等效的。那么我们要证明的是在两个惯性系中,拉格朗日函数满足相同的运动规律。要注意拉格朗日量本身是格朗日函数满足相同的运动规律。要注意拉格朗日量本身是没有物理意义的。重要的是他满足的函数形式和满足的运动没有物理意义的。重要的是他满足的函数形式和满足的运动方程。方程。12已知一维运动自由质点的拉氏量是(a)证明:当按真实运动方式运动时,作用量是(b)设 ,求 ;并任意假定一种非真实的运动方式,计算相应的作用量 ,验证 。解:按真实情况运动时,自由质点作匀速直线运动,速度为常数。将 带入得到将 带入得到(b)假设自由质点不做匀速直线运动,则速度为时间的函数 ,且满足:那么平方的平方的平均值大平均值大于于平均平均值的平方。值的平方。等号成立的条件是 为常数。滑块的能量滑块的能量斜面的能量斜面的能量系统的总能量系统的总能量K系系K系系分析力学作业讲解 第二章 守恒律杜佳欣http:/ 是坐标和速度的函数(a)证明:整个系统绕z轴转动角度 对应的广义动量不再是如1.2.2(2.16)式,而是(b)已知在电磁场中电荷为e 的粒子 ,其中 和 A A 是电磁场的表示和矢势,求广义动量 。解:由广义动量的定义:可得上式得第一项已在课本中求出,那么将值代入即得(b)将带电粒子的是能表带式代入上式可得:2.质量为 半径为 的半球形碗,放在光滑的水平桌面上,如图1。有一个质量为 的滑块沿碗的内壁无摩擦的滑下。用 表示滑块位置与球心连线和竖直方向的夹角。这个系统起始时静止且 。求滑块滑到 时 的值。解:系统的拉格朗日为:那么则对应的拉格朗日方程为化简得将上面第二式写成再带入第一式得注意到等式左边是一个全微分,积分即得利用 ,即得质量为 半径为 的半球形碗,放在光滑的水平桌面上,如图1。有一个质量为 的滑块沿碗的内壁无摩擦的滑下。用 表示滑块位置与球心连线和竖直方向的夹角。这个系统起始时静止且 。求滑块滑到 时 的值。解:由于系统在水平方向不受力,所以系统在水平方向上的动量守恒:在有能量守恒得到式中的 和 为滑块和半球形碗相对于地面的速度。而代入可得由第一式得 ,代入第二式得化解可得即:当 时3.质量为 的质点在三维空间中运动,势能是证明之一质点由 区域经过分界面进入 区域的运动轨迹等同于光线从空气入射到折射率为 的介质所受到的折射。其中,是质点在 区域中的动能。解:系统具有xy平面内的平移对称性,所以动量的x,y分量守恒:又系统的能量守恒,则有那么,则有即:而散射前后动量与z轴的夹角之比为即满足折射定律。4.求半径为 ,圆心角为2的均匀扇形薄片的质心。解:设均匀薄片的定点在原点,取对称轴为y轴,则其重心一定在y轴上那么质心的y坐标为所以扇形的质心在其角平分线距圆心2asin/(3)处。7.写出角动量的笛卡尔分量 和它的平方 用球坐标 表示的表达式。解:由带入得8.在下列场中运动的系统,动量P的什么分量守恒?角动量的什么分量守恒?(a)无穷大均匀平面所产生的场;(b)无穷长均匀柱所产生的场;(c)两个电源所产生的场;(d)均匀圆环所产生的场;(e)均匀圆球所产生的场。解:根据空间的平移对称性导致动量守恒,空间的转动对称性导致角动量守恒可知:(a)无穷大均匀平面所产生的场:P沿平面方向的任意分量,L的垂直平面方向的分量(b)无穷长均匀柱所产生的场:P沿柱方向的分量,L的沿柱方向的分量(c)两个电源所产生的场:L沿两个电源连线方向的分量(d)均匀圆环所产生的场:L沿垂直圆环方向的分量(e)均匀圆球所产生的场:L守恒分析力学作业讲解(三)第三章 有心力场中的运动1、质点受到的有心力为:解:由比莱公式其中 ,A为积分常数。将F带入可得:其中 ,试证明其轨道方程为那么令 ,带入可得其通解为:我们总是可以选择适当的坐标系,使得 ,带入可得2、一个质点在有心引力作用下沿圆形轨道运动,力心在此圆的圆周上。求证这一有心力与距离的五次方成反比。解:设置点运动轨迹圆周的半径为a,则其轨迹方程为:则:带入比莱公式:整理之后可得:所以有心力与距离成五次方成反比。系统的拉格朗日为所以3、在一个顶角为 的圆锥形光滑杯中放置一个质量为m的质点。圆锥的轴沿竖直方向,杯口向上。求证当 时,质点在两个水平圆环之间的杯壁上运动,并写出决定这两个圆环半径的方程。解:系统的约束方程为(1)(2)(3)(4)(1)由(4)式可得带入(3)式可得利用 ,可得解之系统的总能量所以,C=2E/m,带入可得当质点到达最低点或者最高点时 ,那么这个方程有三个解,两正一负,显然负数解应舍弃。设余下的两根为 ,那么(如图)显然只有当 时,质点的速度才为实数,所以质点只能在 之间运动。4、由椭圆的焦点F引一条线段,以均匀的角速度 绕F点转动,求证此线段与椭圆的交点M的速度为 ,其中a和b是椭圆的半长轴和半短轴。解:由椭圆的极坐标方程而所以所以5、(a).有心力势能为 。分别对于 ,和 。画出有效势能 的曲线,并分别讨论这三种情况下的各种可能的运动方式。(b).证明只有当 时,粒子才能落到力心上。说明其物理原因。并对 计算落到力心上的截面。解:(a)等效势能为:根据 和 的关系,三种情况下的 的曲线如下:(黑:;红:;绿:)在有心力场中运动的粒子的能量为我们在讨论粒子在不同的势能中运动,只考虑束缚运动和无限运动。判断粒子能否作无限运动,只需看当 时,粒子的速度(动能)能否一直保持为正的非零值。(2)、当 时,粒子的有效势能:当 时,上式的第二项是主要部分。则而 ,粒子的能量是有限的。所以上式不可能成立,也就是粒子不能落到力心。下面计算粒子落到质心的截面:设粒子的苗追距离为b,则有效势能为再求有效势能的极值当有效势能最大时有粒子被俘获的条件是 ,即所以,粒子落入质心的总截面为6、半径为a的硬球势场是求粒子受这势能散射的有效截面。7、设顶角为 ,底半径为 的硬质圆锥体,锥内势能为 ,锥外势能为 。粒子平行于锥轴入射,如图,求散射的有效散射截面。11、证明在实验室系中靶粒子相对于射弹粒子入射方向的反冲角 ,其中 是射弹粒子在质心系中的散射角。解:设入射粒子在实验室系中的入射速度为 ,设 为 方向的单位矢量,靶粒子在质心系中的散射方向为 。则射弹粒子在质心系中的散射角为入射粒子和靶粒子碰撞后在实验系中的动量为在实验室系中靶粒子的散射角应该是靶粒子的散射后在实验室系中的动量和入射粒子散射前在实验室系中动量的夹角,所以所以

    注意事项

    本文(理论物理基础教程 刘连寿 答案.ppt)为本站会员(hyn****60)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开