排列组合问题教案PPT讲稿.ppt
排列组合问题教案第1页,共61页,编辑于2022年,星期日第2页,共61页,编辑于2022年,星期日排列组合应用题的主要类型和常用方法排列组合应用题的主要类型和常用方法排列组合应用题大致可分为三大类:不带限制条件的排排列组合应用题大致可分为三大类:不带限制条件的排列或组合题,带有约束条件的排列或组合题;排列与组列或组合题,带有约束条件的排列或组合题;排列与组合的综合题解此类问题常用的方法有:合的综合题解此类问题常用的方法有:(1)相邻元素相邻元素的排列,可以采用的排列,可以采用“整体到局部整体到局部”的排法,就是将相邻的排法,就是将相邻的元素当成的元素当成“一个一个”元素进行排列,然后再局部排列,元素进行排列,然后再局部排列,分作两步分作两步(2)元素间隔排列应用题,一般采用元素间隔排列应用题,一般采用“插空插空法法”第3页,共61页,编辑于2022年,星期日(3)含有特殊元素和特殊位置的排列,组合应用题,含有特殊元素和特殊位置的排列,组合应用题,常采用常采用“特殊元素法特殊元素法”,从元素为主出发,先安排特,从元素为主出发,先安排特殊元素;从位置为主出发,先安排好特殊位置上的元殊元素;从位置为主出发,先安排好特殊位置上的元素,结合排除法解决此类问题素,结合排除法解决此类问题(4)指标问题采用指标问题采用“隔隔板法板法”(5)有关有关“分堆分堆”与与“到位到位”应用问题常采应用问题常采用用“分组法分组法”与与“分配法分配法”若只分堆,不指定到具若只分堆,不指定到具体位置,则需注意平均分的情况体位置,则需注意平均分的情况(6)相邻类排列应用相邻类排列应用题常采用题常采用“捆绑法捆绑法”解决,就是将几个相邻元素先抽出解决,就是将几个相邻元素先抽出进行排列再将它们视为一个元素参与下一步的排列,此进行排列再将它们视为一个元素参与下一步的排列,此法是法法是法(1)的逆向思维应用的逆向思维应用第4页,共61页,编辑于2022年,星期日排列与组合应用题,主要考查有附加条件的应用问题,排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:解决此类问题通常有三种途径:以元素为主,应先满以元素为主,应先满足特殊元素的要求,再考虑其他元素;足特殊元素的要求,再考虑其他元素;以位置为主考虑,以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;即先满足特殊位置的要求,再考虑其他位置;先不考先不考虑附加条件,计算出排列或组合数,再减去不符合要求虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数的排列数或组合数前两种方法叫直接解法,后一种方法叫间接解法,求解前两种方法叫直接解法,后一种方法叫间接解法,求解时应注意先把具体问题转化或归结为排列或组合问题;时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理:再通过分析确定运用分类计数原理还是分步计数原理:然后分析题目条件,避免然后分析题目条件,避免“选取选取”时重复和遗漏;最后列时重复和遗漏;最后列出式子计算作答出式子计算作答第5页,共61页,编辑于2022年,星期日典型问题的典型解法典型问题的典型解法相邻问题相邻问题捆绑法捆绑法不相邻问题不相邻问题插空法插空法间隔问题间隔问题分析法分析法定序问题定序问题空位法空位法相同名额的分配的问题相同名额的分配的问题插板法插板法不同元素的平均分组的问题不同元素的平均分组的问题 平均分成几组就除以几的阶乘平均分成几组就除以几的阶乘第6页,共61页,编辑于2022年,星期日 4个男同学,3个女同学站成一排(1)3个女同学必须排在一起,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?第7页,共61页,编辑于2022年,星期日【尝试解答】(1)3个女同学是特殊元素,共有A种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A种排法第8页,共61页,编辑于2022年,星期日第9页,共61页,编辑于2022年,星期日1对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法2对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法第10页,共61页,编辑于2022年,星期日 在本例中,条件不变,把第(1)、(2)小题改为下面两问题:(1)甲不站排头,乙不站排尾,有多少种不同的排法?(2)若甲乙两同学之间必须有3人,有多少种不同的排法?第11页,共61页,编辑于2022年,星期日第12页,共61页,编辑于2022年,星期日(2013汕头质检)若一个三位数的十位数字比个位数字和百位数字都大,称这个数为“伞数”现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中“伞数”有()A120个 B80个 C40个 D20个【答案】【答案】C第13页,共61页,编辑于2022年,星期日 男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)至少有1名女运动员;(2)既要有队长,又要有女运动员【思路点拨】第(1)问可以用直接法或间接法求解第(2)问根据有无女队长分类求解第14页,共61页,编辑于2022年,星期日第15页,共61页,编辑于2022年,星期日第16页,共61页,编辑于2022年,星期日1本题中第(1)小题,含“至少”条件,正面求解情况较多时,可考虑用间接法第(2)小题恰当分类是关键2组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解第17页,共61页,编辑于2022年,星期日热点分类突破热点分类突破本本讲讲栏栏目目开开关关主干知识梳理主干知识梳理热点分类突破热点分类突破押押 题题 精精 练练第18页,共61页,编辑于2022年,星期日热点分类突破热点分类突破本本讲讲栏栏目目开开关关主干知识梳理主干知识梳理热点分类突破热点分类突破押押 题题 精精 练练第19页,共61页,编辑于2022年,星期日热点分类突破热点分类突破本本讲讲栏栏目目开开关关主干知识梳理主干知识梳理热点分类突破热点分类突破押押 题题 精精 练练第20页,共61页,编辑于2022年,星期日热点分类突破热点分类突破本本讲讲栏栏目目开开关关主干知识梳理主干知识梳理热点分类突破热点分类突破押押 题题 精精 练练第21页,共61页,编辑于2022年,星期日热点分类突破热点分类突破本本讲讲栏栏目目开开关关主干知识梳理主干知识梳理热点分类突破热点分类突破押押 题题 精精 练练第22页,共61页,编辑于2022年,星期日第23页,共61页,编辑于2022年,星期日思路导引思路导引(1)取出的取出的4张卡片所标的数字之和等于张卡片所标的数字之和等于10,注意到:,注意到:12341144223310,据此进行分类,又取出卡片还要排序,因此这,据此进行分类,又取出卡片还要排序,因此这是排列与组合的综合问题是排列与组合的综合问题(2)一般地,解答排列与组合的综合问题,是先选元一般地,解答排列与组合的综合问题,是先选元素素(组合组合)再排元素再排元素(排列排列),本题的求解有两处难点,本题的求解有两处难点,一是如何分类,分成几类,这里一是如何分类,分成几类,这里“数字之和为数字之和为10”即为即为问题的突破点;二是选出满足条件的卡片后还需排列,问题的突破点;二是选出满足条件的卡片后还需排列,这是易错点这是易错点第24页,共61页,编辑于2022年,星期日答案:答案:432第25页,共61页,编辑于2022年,星期日解决排列、组合综合问题要遵循的原则:解决排列、组合综合问题要遵循的原则:(1)按事情发生的过程进行分步:按事情发生的过程进行分步:(2)按元素的性质进行分类按元素的性质进行分类特殊元素优先法特殊元素优先法特殊位置优先法特殊位置优先法先不考虑附加条件,计算出排列或组合数,再减去先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列或组合数不合要求的排列或组合数第26页,共61页,编辑于2022年,星期日1有五张卡片,它们正、反面上分别写有五张卡片,它们正、反面上分别写0与与1,2与与3,4与与5,6与与7,8与与9,将其中任意三张并排放在一起,组成,将其中任意三张并排放在一起,组成三位数,共可组成多少个不同的三位数?三位数,共可组成多少个不同的三位数?第27页,共61页,编辑于2022年,星期日第28页,共61页,编辑于2022年,星期日第29页,共61页,编辑于2022年,星期日思路导引思路导引(1)是平均分组问题,与顺序无关,相当是平均分组问题,与顺序无关,相当于于6本不同的书平均分给甲、乙、丙三人,可以理解为一本不同的书平均分给甲、乙、丙三人,可以理解为一个人一个人地来取,个人一个人地来取,(2)是是“均匀分组问题均匀分组问题”,(3)是是不均匀分组问题,分三步进行,不均匀分组问题,分三步进行,(4)分组后再分配,分组后再分配,(5)明确明确“至少一本至少一本”包括包括“2、2、2型型”、“1、2、3型型”、“1、1、4型型”,(6)实质为全排列实质为全排列第30页,共61页,编辑于2022年,星期日第31页,共61页,编辑于2022年,星期日第32页,共61页,编辑于2022年,星期日(1)解决此类问题要分清是分组问题还是分配问题解决此类问题要分清是分组问题还是分配问题(2)分组问题属于分组问题属于“组合组合”问题,常见的分组问题有三问题,常见的分组问题有三种:种:完全均匀分组,每组的元素个数均相同;完全均匀分组,每组的元素个数均相同;第33页,共61页,编辑于2022年,星期日2将将4名大学生分配到名大学生分配到3个乡镇去当村官,每个乡镇至个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有多少种?少一名,则不同的分配方案有多少种?第34页,共61页,编辑于2022年,星期日思路导引思路导引以多面手入选的人数为分类标准分类以多面手入选的人数为分类标准分类求解求解第35页,共61页,编辑于2022年,星期日第36页,共61页,编辑于2022年,星期日第37页,共61页,编辑于2022年,星期日第38页,共61页,编辑于2022年,星期日第39页,共61页,编辑于2022年,星期日对于多个限制条件的组合问题,要以其中的某个条件为对于多个限制条件的组合问题,要以其中的某个条件为主去进行分类,然后再考虑其余的限制条件,分类要不主去进行分类,然后再考虑其余的限制条件,分类要不重不漏重不漏第40页,共61页,编辑于2022年,星期日3赛艇运动员赛艇运动员10人,人,3人会划右舷,人会划右舷,2人会划左舷,其余人会划左舷,其余5人两舷都能划,现要从中选人两舷都能划,现要从中选6人上艇,平均分配在两舷上人上艇,平均分配在两舷上划浆,有多少种不同的选法?划浆,有多少种不同的选法?第41页,共61页,编辑于2022年,星期日 2A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有 ()A24种 B60种 C90种 D120种【答案】B第42页,共61页,编辑于2022年,星期日 n个个 相同小球放入相同小球放入m(mn)个盒子里个盒子里,要求每个盒子要求每个盒子里至少有一个小球的放法等价于里至少有一个小球的放法等价于n个相同小球串成一串个相同小球串成一串从间隙里选从间隙里选m-1个结点剪截成个结点剪截成m段段.例例4.某校准备参加今年高中数学联赛某校准备参加今年高中数学联赛,把把16个选手名额个选手名额分配到高三年级的分配到高三年级的1-4 个教学班个教学班,每班至少一个名额每班至少一个名额,则不则不同的分配方案共有同的分配方案共有_种种.题型四、指标问题采用题型四、指标问题采用“剪截法(档板法)剪截法(档板法)”:解:解:问题等价于把问题等价于把16个相同小球放入个相同小球放入4个盒子里个盒子里,每每个盒子至少有一个小球的放法种数问题个盒子至少有一个小球的放法种数问题.将将16个小球串成一串,截为个小球串成一串,截为4段有段有 种截断法,对应放到种截断法,对应放到4个盒子里个盒子里.因此,不同的分配方案共有因此,不同的分配方案共有455种种.第43页,共61页,编辑于2022年,星期日 n个个 相同小球放入相同小球放入m(mn)个盒子里个盒子里,要求每个盒子里要求每个盒子里至少有一个小球的放法等价于至少有一个小球的放法等价于n个相同小球串成一串从间个相同小球串成一串从间隙里选隙里选m-1个结点剪截成个结点剪截成m段段.变式:变式:某校准备参加今年高中数学联赛某校准备参加今年高中数学联赛,把把16个选手名额分个选手名额分配到高三年级的配到高三年级的1-4 个教学班个教学班,每班的名额不少于该班的序号每班的名额不少于该班的序号数数,则不同的分配方案共有则不同的分配方案共有_种种.解:解:问题等价于先给问题等价于先给2班班1个,个,3班班2个,个,4班班3个,再把个,再把余下的余下的10个相同小球放入个相同小球放入4个盒子里个盒子里,每个盒子至少有一每个盒子至少有一个小球的放法种数问题个小球的放法种数问题.将将10个小球串成一串,截为个小球串成一串,截为4段有段有 种截断法,对应放到种截断法,对应放到4个盒子里个盒子里.因此,不同的分配方案共有因此,不同的分配方案共有84种种.第44页,共61页,编辑于2022年,星期日【练习】【练习】把把9 9个相同的小球放入编号为个相同的小球放入编号为1 1、2 2、3 3的的三个箱子里,要求每个箱子放入球的个三个箱子里,要求每个箱子放入球的个数不小于其编号数,则不同的方法种数数不小于其编号数,则不同的方法种数有有 种。种。化归成典型问题第45页,共61页,编辑于2022年,星期日编号为编号为1至至n的的n个小球放入编号为个小球放入编号为1到到 n的的n个盒子里个盒子里,每个盒子放一个小球每个盒子放一个小球.要求小球与盒子的编号都不同要求小球与盒子的编号都不同,这种排列称为这种排列称为错位排列错位排列.错位法:错位法:特别当特别当n=2,3,4,5时的错位数各为时的错位数各为1,2,9,44.例例5.编号为编号为1至至6的的6个小球放入编号为个小球放入编号为1至至6的的6个盒子里个盒子里,每个盒子放一个小球每个盒子放一个小球,其中恰有其中恰有2个小球与盒子的编号相同个小球与盒子的编号相同的放法有的放法有_种种.解:解:选取编号相同的两组球和盒子的方法有选取编号相同的两组球和盒子的方法有 种种,其余其余4组球与盒子需错位排列有组球与盒子需错位排列有9种放法种放法.故所求方法有故所求方法有159135种种.第46页,共61页,编辑于2022年,星期日【思考题】【思考题】7 7个人坐成一排,要调换其中三人的个人坐成一排,要调换其中三人的位置而其余四人不动,有位置而其余四人不动,有 种不同的调换种不同的调换方法方法?第47页,共61页,编辑于2022年,星期日【例【例1 1】如图,在某城市中,如图,在某城市中,MM、N N两地之间有整齐的道路网两地之间有整齐的道路网(图中正方形的每一条边都表示一条街道)(图中正方形的每一条边都表示一条街道)。则从。则从MM到到N N的最短路径有的最短路径有 条。条。捷径问题捷径问题第48页,共61页,编辑于2022年,星期日【例【例1 1】(】(0808,重庆卷,重庆卷)某人有某人有4 4种颜色的灯泡(每种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的种颜色的灯泡足够多),要在如图所示的6 6个点个点A A、B B、C C、A A1 1、B B1 1、C C1 1上各装一个灯上各装一个灯泡,要求同一条线段两端的灯泡不同色,则泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共每种颜色的灯泡都至少用一个的安装方法共有有 种。种。染色问题第49页,共61页,编辑于2022年,星期日题题型七、染色型七、染色问题问题解解:按按照照A1,B1,C1,A,B,C的的顺顺序序安安装装灯灯泡泡A1处处有有4种种方方法法,B1处处有有3种方法,种方法,C1处处有有2种方法种方法(1)当当A处处与与B1处处不不同同与与C1处处相相同同时时,A处处有有1种种方方法法,由由于于装装完完B,C后每种后每种颜颜色的灯泡至少用一个,因此共有色的灯泡至少用一个,因此共有4321(12)72种种(2)当当A处处与与B1处处相同与相同与C1处处不同不同时时,A处处有有1种方法种方法B处处有有3种方法,种方法,C处处有有1种方法,共有种方法,共有43213172种种(3)当当A处处与与B1,C1均均不不相相同同时时,A处处有有1种种方方法法。B,C处处共共有有213种种方方法法,因因此此,共共有有4321(21)72种种因因此此,由由分分类类计计数数原原理理可可得共有得共有727272216(种种)方法方法第50页,共61页,编辑于2022年,星期日热点分类突破热点分类突破本本讲讲栏栏目目开开关关主干知识梳理主干知识梳理热点分类突破热点分类突破押押 题题 精精 练练第51页,共61页,编辑于2022年,星期日热点分类突破热点分类突破本本讲讲栏栏目目开开关关主干知识梳理主干知识梳理热点分类突破热点分类突破押押 题题 精精 练练第52页,共61页,编辑于2022年,星期日易错辨析实际意义理解不清导致计数错误 (2012山东高考改编)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 ()A232 B256 C472 D484第53页,共61页,编辑于2022年,星期日【答案】B第54页,共61页,编辑于2022年,星期日错因分析:(1)错解的原因是没有理解“3张卡片不能是同一种颜色”的含义,误认为“取出的三种颜色不同”(2)运用间接法求“不含有红色卡片”时,忽视“3张卡片不能是同一种颜色”,误求为C,导致错选D.防范措施:(1)准确理解题意,抓住关键字词的含义,“3张卡片不能是同一种颜色”是指“两种颜色或三种颜色”都满足要求(2)选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用第55页,共61页,编辑于2022年,星期日【答案】C第56页,共61页,编辑于2022年,星期日学学林林探探路路贵贵涉涉远远,无无人人迹迹处处有有奇奇观观。第57页,共61页,编辑于2022年,星期日会当凌绝顶,一览众山小。会当凌绝顶,一览众山小。第58页,共61页,编辑于2022年,星期日第59页,共61页,编辑于2022年,星期日第60页,共61页,编辑于2022年,星期日第61页,共61页,编辑于2022年,星期日