欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019学年高一数学上学期期末考试试题(含解析)(1).doc

    • 资源ID:706134       资源大小:723.79KB        全文页数:14页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019学年高一数学上学期期末考试试题(含解析)(1).doc

    - 1 -20192019 学年高一年级第一学期期末考试学年高一年级第一学期期末考试数学试卷数学试卷第第卷(共卷(共 6060 分)分)一、选择题:本大题共一、选择题:本大题共 1212 个小题个小题, ,每小题每小题 5 5 分分, ,共共 6060 分分. .在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有一项是符合题目要求的一项是符合题目要求的. .1. 直线的倾斜角为( )A. 30° B. 60° C. 120° D. 150°【答案】A【解析】直线的斜率为,所以倾斜角为 30°.故选 A.2. 空间直角坐标系中,已知点,则线段的中点坐标为( )A. B. C. D. 【答案】A【解析】点,由中点坐标公式得中得为:,即.故选 A.3. 一个三棱锥的正视图和俯视图如图所示,则该三棱锥的俯视图可能为( ) 【答案】D【解析】由几何体的三视图可知,三棱锥的顶点在底面的射影在底面棱上,可知几何体如图:- 2 -侧视图为:D.故选:D.4. 下列四个命题:三点确定一个平面;一条直线和一个点确定一个平面;若四点不共面,则每三点一定不共线;三条平行直线确定三个平面.其中正确的有( )A. 1 个 B. 2 个 C. 3 个 D. 4 个【答案】A【解析】对于,三个不共线的点可以确定一个平面,所以不正确;对于,一条直线和直线外一点可以确定一个平面,所以不正确;对于,若三点共线了,四点一定共面,所以正确;对于,当三条平行线共面时,只能确定一个平面,所以不正确.故选 A.5. 已知圆,圆,则两圆的位置关系为( )A. 相离 B. 相外切 C. 相交 D. 相内切【答案】A【解析】圆,即,圆心为(0,3),半径为 1,圆,即,圆心为(4,0),半径为 3.所以两圆相离,故选 A.6. 设入射光线沿直线 y=2x+1 射向直线,则被反射后,反射光线所在的直线方程是( )A. B. C. D. 【答案】D【解析】由可得反射点A(1,1),在入射光线y=2x+1 上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上。根据点A(1,1)和点C(1,0)的坐标,利用两点式求得反射光线所在的直线方程是,化简可得x2y1=0.故选:D.- 3 -7. 直三棱柱中,若,则异面直线与所成角的余弦值为( )A. 0 B. C. D. 【答案】A【解析】连接,在正方形中,又直三棱柱中,即,所以面.所以,所以面,面,所以,即异面直线与所成角为 90°,所以余弦值为 0.故选 A.8. 已知是两相异平面,是两相异直线,则下列错误的是( )A. 若,则 B. 若,则C. 若,则 D. 若,则【答案】B【解析】对于 A,由面面垂直的判定定理可知, 经过面 的垂线 ,所以成立;对于 B,若, 不一定与 平行,不正确;对于 C,若, 则正确;对于 D,若,则正确.- 4 -故选 B.9. 若 是圆上动点,则点 到直线距离的最大值( )A. 3 B. 4 C. 5 D. 6【答案】C【解析】圆的圆心为(0,3),半径为 1.是圆上动点,则点 到直线距离的最大值为圆心到直线的距离 加上半径即可.又直线恒过定点,所以.所以点 到直线距离的最大值为 4+1=5.故选 C.10. 已知棱长为 1 的正方体的俯视图是一个面积为 1 的正方形,则该正方体的正视图的面积可能等于( )A. B. C. D. 2【答案】C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为 1; 如果斜对着正方体的某表面看,其面积就变大,最大时, (是正对着正方体某竖着的棱看) ,面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是 1,最大是,故选 C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的- 5 -长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.11. 直线与圆相交于两点,若,则 的取值范围是( )A. B. C. D. 【答案】C【解析】圆,即.直线与圆相交于两点,若,设圆心到直线距离.则,解得.即,解得故选 C.点睛:直线与圆的位置关系常用处理方法:()直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;()直线与圆相交,利用垂径定理也可以构建直角三角形;()直线与圆相离时,当过圆心作直线垂线时长度最小12. 已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是 1,则点的轨迹方程为( )A. B. C. D. 【答案】B【解析】设,直线的斜率为,直线的斜率为.有- 6 -直线的斜率与直线的斜率的差是 1,所以.通分得:,整理得:.故选 B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程第第卷(共卷(共 9090 分)分)二、填空题(每题二、填空题(每题 5 5 分,满分分,满分 2020 分,将答案填在答题纸上)分,将答案填在答题纸上)13. 已知圆,圆,则两圆公切线的方程为_【答案】【解析】圆,圆心为(0,0),半径为 1;圆,圆心为(4,0),半径为 5.圆心距为 4=5-1,故两圆内切.切点为(-1,0),圆心连线为 x 轴,所以两圆公切线的方程为,即.故答案为:.14. 已知点为圆上的动点,则的最小值为_【答案】-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为:-4.15. 如图,二面角的大小是 30°,线段,与所成的角为 45°,则与平面- 7 -所成角的正弦值是_【答案】【解析】过点A作平面的垂线,垂足为C,在内过C作l的垂线,垂足为 D.连结AD,由 CDl, ACl得, l面 ACD,可得ADl,因此,ADC为二面角l的平面角,ADC=30°又AB与l所成角为 45°,ABD=45°连结BC,可得BC为AB在平面内的射影,ABC为AB与平面所成的角。设AD=2x,则RtACD中,AC=ADsin30°=x,RtABD中,RtABC中,故答案为:.16. 如图,在平面直角坐标系中,圆,点,点 是圆 上的动点,线段的垂直平分线交线段于点 ,设分别为点的横坐标,定义函数,给出下列结论:;是偶函数;在定义域上是增函数;- 8 -图象的两个端点关于圆心 对称;动点 到两定点的距离和是定值.其中正确的是_【答案】【解析】对于,当即轴,线段的垂直平分线交线段于点 ,显然 不在 BD上,所以所以不对;对于,由于,不关于原点对称,所以不可能是偶函数,所以不对;对于,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(7,3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于,由垂直平分线性质可知,所以,正确.故答案为:.三、解答题三、解答题 (本大题共(本大题共 6 6 小题,共小题,共 7070 分分. .解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤. .) 17. 已知两条直线,.(1)若,求实数的值;(2)若,求实数的值.【答案】(1)a=2 或;a=-1;(2).【解析】试题分析:(1)本小题考查两直线平行的性质,当两直线的斜率存在且两直线平行时,他们的斜率相等,注意截距不相等;由,得或-1,经检验,均满足;(2)本小题考查两直线垂直的性质,当两直线斜率存在时,两直线的斜率之积为,注意斜率不存在的情况;由于直线 的斜率存在,所以,由此即可求出结果.试题解析:(1) 因为直线 的斜率存在,- 9 -又, 或,两条直线在 轴是的截距不相等,所以 或 满足两条直线平行;(2)因为两条直线互相垂直,且直线 的斜率存在,所以,即,解得.点睛:设平面上两条直线的方程分别为;1比值法:和 相交; 和 垂直 ; 和 平行; 和 重合2斜率法:(条件:两直线斜率都存在,则可化成点斜式) 与 相交 ; 与 平行; 与 重合; 与 垂直; 18. 如图所示,是圆柱的母线,是圆柱底面圆的直径, 是底面圆周上异于的任意一点,.(1)求证:;(2)求三棱锥体积的最大值,并写出此时三棱锥外接球的表面积.【答案】(1)见解析;(2) .【解析】试题分析:(1)由圆柱易知平面,所以,由圆的性质易得,进而可证平面;- 10 -(2)由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点 在弧中点时最大, 此时外接球的直径即可得解.试题解析:(1)证明:已知是圆柱的母线,.平面是圆柱底面圆的直径, 是底面圆周上异于的任意一点,又,平面又平面(2)解:由已知得三棱锥的高,当直角的面积最大时,三棱锥的体积最大,当点 在弧中点时最大,结合(1)可得三棱锥的外接球的直径即为,所以此时外接球的直径.点睛:一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点) ,这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.19. 已知方程若此方程表示圆,求 的取值范围;(2)若此方程表示圆 ,且点在圆 上,求过点的圆 的切线方程。【答案】(1) 或;(2)或【解析】试题分析:(1)若此方程表示圆,则,即可得解;(2)代入点得 ,从而得圆心半径,由已知得所求圆的切线斜率存在,设为 ,切线方程为:,由圆心到直线距离等于半径列方程求解即可.- 11 -试题解析:(1)若此方程表示圆,则或(2)由点在圆 ,带入圆的方程得,此时圆心,半径,由已知得所求圆的切线斜率存在,设为 ,切线方程为:或,切线方程为:或.20. 在平面直角坐标系中,设二次函数的图像与两坐标轴有三个交点,经过这三点的圆记为(1)求圆 的方程; (2)若过点的直线与圆 相交,所截得的弦长为 4,求直线的方程.【答案】(1);(2)或.【解析】试题分析:(1)先求得圆的三个交点, ,由和的垂直平分线得圆心,进而得半径;(2)易得圆心到直线的距离为 1,讨论直线斜率不存在和存在时,利用圆心到直线的距离求解即可.试题解析:二次函数的图像与两坐标轴轴的三个交点分别记为(1)线段的垂直平分线为,线段的垂直平分线,两条中垂线的交点为圆心,又半径,圆的方程为:(2)已知圆的半径,弦长为 4,所以圆心到直线的距离为 1,若直线斜率不存在时,即时,满足题意;当直线斜率存在时,设直线斜率存在为 ,直线方程为,此时直线方程为:,所以直线的方程为:或.点睛:直线与圆的位置关系常用处理方法:- 12 -()直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;()直线与圆相交,利用垂径定理也可以构建直角三角形;()直线与圆相离时,当过圆心作直线垂线时长度最小21. 如图所示,在多面体中,四边形是正方形,为的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1) 见解析;(2) 见解析.【解析】试题分析:(1)设与交于点 ,连接易证得四边形为平行四边形,所以,进而得证;.试题解析:(1)设与交于点 ,连接.分别为中点,四边形为平行四边形,所以,又平面平面(2)平面平面,又平面- 13 -平面,又平面,所以平面平面.22. 已知圆和定点,由圆 外面动点向圆 引切线,切点为 ,且满足.(1)求证:动点 在定直线上;(2)求线段长的最小值并写出此时点 的坐标;【答案】(1) 见解析;(2).【解析】试题分析:(1)由,所以,从而得解;(2)由,所以的最小值即为的最小值,过点 O 作直线的垂线求垂足即可.试题解析:(1)证明:由,即动点 在定直线上(2)解:由,所以的最小值即为的最小值,又点 在直线上,所以此时直线的方程为,联立直线解得点.- 14 -

    注意事项

    本文(2019学年高一数学上学期期末考试试题(含解析)(1).doc)为本站会员(随风)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开