选修2-2《数学归纳法》课件ppt.ppt
唐山市丰润区第二中学唐山市丰润区第二中学 高二教研组高二教研组 陈宝双陈宝双我是我是一毛一毛我是我是二毛二毛我是我是三毛三毛我是我是谁?谁?我不是我不是四毛!四毛!我是小我是小明!明!猜:猜:四毛四毛!一、创设情境,开启学生思维一、创设情境,开启学生思维情境一情境一解解:猜想数列的通项公式为猜想数列的通项公式为验证验证:同理得同理得啊啊,有完有完没完啊没完啊?正整数正整数无数个无数个!对于数列,已知,对于数列,已知,(1)求出数列前)求出数列前4项项,你能得到什么猜你能得到什么猜想?想?(2)你的猜想一定是正确的吗?)你的猜想一定是正确的吗?情境二情境二(一)视频播放(一)视频播放你见过多米诺骨牌游戏吗你见过多米诺骨牌游戏吗?请欣赏一下请欣赏一下那那场景场景!对我们解决本题证明有什么启示?对我们解决本题证明有什么启示?二、引导探究,寻求解决方法二、引导探究,寻求解决方法1、第一块骨牌倒下、第一块骨牌倒下2、任意相邻的两块骨牌,前一块倒下一定导致后一块、任意相邻的两块骨牌,前一块倒下一定导致后一块倒下倒下条件(条件(2)事实上给出了一个递推关系,换言之就是假)事实上给出了一个递推关系,换言之就是假设第设第K块倒下,则相邻的第块倒下,则相邻的第K+1块也倒下块也倒下请同学们思考所有的骨牌都一一倒下只需满足哪几个请同学们思考所有的骨牌都一一倒下只需满足哪几个条件条件(二二)师生互助师生互助多米诺骨牌游戏原理多米诺骨牌游戏原理(1)第一块骨牌倒下。)第一块骨牌倒下。(2)若若第第k块块倒倒下下时时,则则相相邻邻的的第第k+1块块也也倒下。倒下。根根据据(1)和和(2),可可知知不不论论有有多多少少块块骨骨牌牌,都能全部倒下。都能全部倒下。(1)当)当n=1时,猜想成立时,猜想成立根根据据(1)和和(2),可可知知对对任任意意的的正正整整数数n,猜猜想想都成立。都成立。通项公式为通项公式为 的证的证明方法明方法(2)若若当当n=k时时猜猜想想成成立,即立,即 ,则当,则当n=k+1时猜想也成立,时猜想也成立,即即 。三、类比问题,师生合作探究三、类比问题,师生合作探究(一)类比归纳当一个命题满足上述(当一个命题满足上述(1)、()、(2)两个条件时,我们能把证明无限问题两个条件时,我们能把证明无限问题用有限证明解决吗用有限证明解决吗?(二)理解升华(二)理解升华思考:思考:根据以上逻辑推理根据以上逻辑推理条件(条件(1),条件(),条件(2)分别起什么作用?)分别起什么作用?条件(条件(1),条件(),条件(2)为什么缺一不可?)为什么缺一不可?(三)思维延伸(三)思维延伸一般的,证明一个与正整数有关的命题,可按下列一般的,证明一个与正整数有关的命题,可按下列步骤进行:步骤进行:(1 1)【归纳奠基归纳奠基】证明当证明当n n取第一个值取第一个值n n0 0(n(n0 0 N*)时命题成立时命题成立;(2 2)【归纳递推归纳递推】假设当假设当n=k(kNn=k(kN*,k n,k n0 0)时命题时命题成立,证明当成立,证明当n=k+1n=k+1时命题也成立时命题也成立.从而就可以断定命题对于从而就可以断定命题对于n n0 0开始的所有正整数开始的所有正整数n n都成立。都成立。这种证明方法这种证明方法叫做叫做 数学归纳法数学归纳法。(四)提炼概念(四)提炼概念对于数列,已知,对于数列,已知,写出数列前写出数列前4项项,并猜想其通项公式并猜想其通项公式 ;同学们同学们,你能验证你能验证你的猜想是不是正确吗你的猜想是不是正确吗?四、例题研讨,学生实践应用四、例题研讨,学生实践应用(一)典例析剖(一)典例析剖(二)变式精炼(二)变式精炼用数学归纳法证明用数学归纳法证明(三)能力提升(三)能力提升用数学归纳法证明用数学归纳法证明 证明:证明:(1)当)当n=1时,时,左边左边=12=1 右边右边=1 等式成立等式成立(2)假设当假设当n=k时等式成立时等式成立,即即那么那么,当当n=k+1时时即当即当n=k+1等式也成立等式也成立根据根据(1)和和(2),可知等式对任何可知等式对任何 都成立都成立.凑出目标凑出目标用用到到归归纳假设纳假设五、小结反思,学生提高认识五、小结反思,学生提高认识(一)一种方法:一种用来证明某些“与正整数n有关的命题”的方法 数学归纳法(二)二个注意:1、“二步一结论”缺一不可。2、第(2)步证明“假设n=k成立则n=k+1也成立”时一定要用到归纳假设六、巩固作业,分层布置六、巩固作业,分层布置课本课本P P9696习题习题2.3 A2.3 A组组 1 1、2 2(必做)(必做)(选做题)(选做题)用数学归纳法证明用数学归纳法证明时,由时,由n=kn=k(k1k1)时不等式成立,推证)时不等式成立,推证n=k+1n=k+1,左边,左边应增加的项数是(应增加的项数是()项)项A.2A.2k k-1 B.2-1 B.2k k+1 C.2+1 C.2k-1k-1 D.2 D.2k k