相似三角形的判定课件ppt.ppt
相似三角形的定义相似三角形的定义:对应角相等,对应边成比例的两个三对应角相等,对应边成比例的两个三角形叫做相似三角形角形叫做相似三角形.相似三角形对应边的相似三角形对应边的比值叫做相似比比值叫做相似比(或相似系数或相似系数).知识回顾知识回顾注:三角形相似与三角形全等不同,全等注:三角形相似与三角形全等不同,全等三角形一定相似,但相似三角形不一定全等。三角形一定相似,但相似三角形不一定全等。相似的表示方法相似的表示方法符号:符号:读作:相似于读作:相似于最简单的相似多边形是什么最简单的相似多边形是什么图形图形呢?呢?ABCA1B1C1相似比相似比ABCA1B1C1判定两个三角形相似的方法判定两个三角形相似的方法(1)(1)两角对应相等两角对应相等,两三角形相似两三角形相似;(2)(2)两边对应成比例且夹角相等两边对应成比例且夹角相等,两三角形相似两三角形相似;(3)(3)三边对应成比例三边对应成比例,两三角形相似两三角形相似.BACACB如何证明?若从定义出发判断两个三角形是否相似,若从定义出发判断两个三角形是否相似,需要考虑需要考虑6 6个元素,比较麻烦个元素,比较麻烦判定两个三角形相似的简单方法判定两个三角形相似的简单方法:EBACDA=AADEABCDE/BCADE=BAED=C如右下图:如右下图:在在 ABC中,中,D、E分别是分别是AB、AC边边上的点,且上的点,且DE BC,则在,则在 ABC中有:中有:下面对以上判定方法进行严格的证明(定义法)下面对以上判定方法进行严格的证明(定义法)如果如果D、E交在交在BA、CA的延长线上,的延长线上,且且DE BC,结论是否结论是否仍然成立呢?仍然成立呢?注:写相似时,注:写相似时,要把表示对应角顶点的字母写要把表示对应角顶点的字母写在对应的位置上。在对应的位置上。EAD=CABADE=ABCAED=ACBEF/DBED/BCFBDE为ED=FBAECBDF作作 E F/D B交交CB延延长长线线于于FADEABC对于上图的情形,同样可以证明对于上图的情形,同样可以证明 ADEABC,这,这是判定两个三角形相似的定理,即是预备定理。是判定两个三角形相似的定理,即是预备定理。平行于三角形一边的直线和其他两边平行于三角形一边的直线和其他两边(或两边的延长线或两边的延长线)相交相交,所构成的三角形所构成的三角形与原三角形相似与原三角形相似.AECBDEBACD知识要点知识要点相似三角形判定的预备定理相似三角形判定的预备定理:A字型字型 8字字型型 定理所对应的图形如下定理所对应的图形如下:从预备定理出发,观察下图,你能得出什么新从预备定理出发,观察下图,你能得出什么新结论?在图形变化过程中,始终满足结论?在图形变化过程中,始终满足DEBC在图形运动中,由于在图形运动中,由于DEBC,因此在,因此在D、E的变化过程中,的变化过程中,ADE的边长在变,而角的的边长在变,而角的大小始终不变。这说明什么问题呢?大小始终不变。这说明什么问题呢?说明只要两个三角形的说明只要两个三角形的三个对应角相等,那么两三个对应角相等,那么两个三角形就相似个三角形就相似,而只要两个角相等,第三个必,而只要两个角相等,第三个必相等,所以就有:相等,所以就有:判定定理判定定理1思路:在运思路:在运动变化中找动变化中找不变性不变性 对于任意的两个三角形,对于任意的两个三角形,如果一个三角形如果一个三角形的两个角与另一个三角形的两个角对应相等,的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。那么这两个三角形相似。知识要点知识要点三角形相似三角形相似判定判定定理定理1A1B1C1ABCABCA1B1C1.那么那么即:如果即:如果A=A1,B=B1.简述简述:两角对应相等两角对应相等,两三角形相似两三角形相似CBA已知已知,如图如图,在在 ABC和和 A B C 中中,A=A,B=B,求证求证:ABC A B C ABCDE证明:在在ABC的边的边AB(或或AB的延长线的延长线)上上,截截取取AD=AB,过点过点D作作DE/BC,交交AC于点于点E.由由预备定理得预备定理得:ADEABCADE=B,B=B ADE=B A=A,AD=A B ADEA B C A B C ABCABCCBADE例1如图,在ABC,AB=AC,D是AC边上一点,BD=BC.求证:BC2=ACCD分析:要证明BC2=ACCD,即证明 ,只要证明AC、BC和BC、CD为相似三角形的两组对应边即可。证明:ABC是等腰三角形A=180-2CBCD是等腰三角形DBC=180-2CDBC=A又C为公共角ABCBDC即 BC2=ACCDBCDA 如图,圆内接ABC角平分线CD延长后交圆于一点E.分析:要证 ,应考虑EB、BD 和EC、CB所在的三角形相似,即是EBDECB练一练DEABC证明:由已知条件,可得证明:由已知条件,可得ACE=BCE。ACE与与ABE是同弧上的圆周角,是同弧上的圆周角,ACE=ABE BCE=ABE。又又 BED=CEB。EBDECB结合下图,依照得出判定定理结合下图,依照得出判定定理1的思路,即的思路,即“在在运动中找不变性运动中找不变性”我们还可以发现我们还可以发现A=A,此时两个三角形也相似。对于任意的两个三角形,对于任意的两个三角形,如果两个三角形的如果两个三角形的两组对应边的比相等,并且相应的夹角相等,两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。那么这两个三角形相似。知识要点知识要点三角形相似三角形相似判定判定定理定理2A1B1C1ABCABCA1B1C1.即:即:如果如果B=B1.那么那么简述简述:两边对应成比例且夹角相等两边对应成比例且夹角相等,两三角形相两三角形相似似ABCCBADE已知:如图,在ABC和ABC中,A=A,求证:ABCABCADEABCDE/BCABCADECBADE已知:如图ABC中,点D、E分别在AB、AC上,且求证:DE/BCE证明:作 DE/BC,交AC于EAE=AE因此因此E与点与点E 重合即重合即DE 与与DE重合重合,所以所以 DE/BC采用了“同一法”的间接证明引理引理 如果一条直线截三角形的两边如果一条直线截三角形的两边(或两边的延或两边的延长线长线)所得的对应线段成比例所得的对应线段成比例,那么这条直线平行那么这条直线平行于三角形的第三边于三角形的第三边.当一个命题的条件和结论所指的概念唯一存在时,若直接证明有困难,就不妨改为去证它的逆否命题,然后根据唯一性的原理断言命题为真,这种解题方法叫做同一法 用同一法解题一般有三个步骤先作出一个符合结论的图形,然后推证出所先作出一个符合结论的图形,然后推证出所作的图形符合已知条件;作的图形符合已知条件;根据唯一性,证明所作出的图形与已知的图根据唯一性,证明所作出的图形与已知的图形是全等的或重合的;形是全等的或重合的;从而说明已知图形符合结论从而说明已知图形符合结论 例 如图,在ABC内任取一点D,连接AD和BD.点E在ABC外,EBC=ABD,ECB=DAB.求证:DBEABC.BACDE分析:容易得出ABC=DBE只需要再证明 即证只要证明ABDCBE研究两个三角形相似的判定问研究两个三角形相似的判定问题,除了上述方法外,还可以题,除了上述方法外,还可以通过与三角形全等的判定进行通过与三角形全等的判定进行类比,得出有关猜想。例如,类比,得出有关猜想。例如,类比类比“三边对应相等,两三角三边对应相等,两三角形全等形全等”。可以得出猜想:三。可以得出猜想:三边对应成比例,两三角形相似。边对应成比例,两三角形相似。即判定定理即判定定理3 对于任意的两个三角形,对于任意的两个三角形,如果两个三如果两个三角形的三组对应边的比相等,那么这两角形的三组对应边的比相等,那么这两个三角形相似。个三角形相似。知识要点知识要点三角形相似三角形相似判定判定定理定理3ABCA1B1C1.即:即:如果如果那么那么A1B1C1ABC简述:三边对应成比例,两三角形相似ABCCBA已知:如图,在ABC和ABC中求证:ABCABC证明:在ABC的边AB(或延长线)上截取AD=AB,过点D作DE/BC,交AC于点E.DEADEABC AD=ABADEABCABCABC例如图,已知D、E、F分别是ABC三边BC、CA、AB的中点.求证:DEFABCFDEBAC证明:线段EF、FD、DE都是ABC的中位线DEFABC直角三角形相似的判定定理此外,与直角三角形全等的判定定理类比,可以引出直角三角形相似的另一个判定定理:(1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似.如果一个直角三角形的如果一个直角三角形的斜边斜边和一条和一条直角直角边边与另一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,对应成比例,那么这两个直角三角形相似。那么这两个直角三角形相似。知识要点知识要点判定判定直角直角三角形相似的定理三角形相似的定理HLABCABCA1B1C1.即:即:如果如果那么那么A1B1C1RtABC 和和 RtA1B1C1.例如图,已知AD、BE分别是ABC中BC边和AC边上的高,H是AD、BE的交点求证:(1)ADBC=BEAC (2)AHHD=BHHE分析:(1)只要证明RtADCRtBEC (2)只要证明RtAHERtBHD小结相似三角形的概念预备定理判定定理3判定定理2判定定理1直角三角形判定定理 如果两个三角形有一个内角对应相等,如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?那么这两个三角形一定相似吗?一角对应相等的两个三角形不一定相似。一角对应相等的两个三角形不一定相似。(1)所有的等腰三角形都相似。)所有的等腰三角形都相似。(2)所有的等腰直角三角形都相似。)所有的等腰直角三角形都相似。(3)所有的等边三角形都相似。)所有的等边三角形都相似。(4)所有的直角三角形都相似。)所有的直角三角形都相似。(5)有一个角是)有一个角是100 的两个等腰三角形都相似。的两个等腰三角形都相似。(6)有一个角是)有一个角是70 的两个等腰三角形都相似。的两个等腰三角形都相似。(7)若两个三角形相似比为)若两个三角形相似比为1,则它们必全等。,则它们必全等。(8)相似的两个三角形一定大小不等。)相似的两个三角形一定大小不等。1.判断下列说法是否正确?并说明理由。判断下列说法是否正确?并说明理由。随堂练习随堂练习ACD CBD ABC小练习小练习找出图中所有的相似三角形。找出图中所有的相似三角形。“双垂直双垂直”三角形三角形BDAC有三对相似三角形:有三对相似三角形:ACD CBDCBD ABCACD ABC课堂小结课堂小结1.相似图形三角形的判定方法:相似图形三角形的判定方法:通过定义通过定义通过定义通过定义(三边对应成比例,三角相等)(三边对应成比例,三角相等)(三边对应成比例,三角相等)(三边对应成比例,三角相等)相似三角形判定的预备定理相似三角形判定的预备定理相似三角形判定的预备定理相似三角形判定的预备定理三边对应成比例,两三角形相似三边对应成比例,两三角形相似三边对应成比例,两三角形相似三边对应成比例,两三角形相似两边对应成比例且夹角相等,两三角形相似两边对应成比例且夹角相等,两三角形相似两边对应成比例且夹角相等,两三角形相似两边对应成比例且夹角相等,两三角形相似两角对应相等,两三角形相似两角对应相等,两三角形相似两角对应相等,两三角形相似两角对应相等,两三角形相似两直角三角形的斜边和一条直角边对应成比两直角三角形的斜边和一条直角边对应成比两直角三角形的斜边和一条直角边对应成比两直角三角形的斜边和一条直角边对应成比 例,两直角三角形相似例,两直角三角形相似例,两直角三角形相似例,两直角三角形相似