教育专题:初中数学经典课件:因式分解(人教版).ppt
-
资源ID:70678162
资源大小:1.50MB
全文页数:57页
- 资源格式: PPT
下载积分:16金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
教育专题:初中数学经典课件:因式分解(人教版).ppt
复习回顾复习回顾口答:口答:问题:问题:630可以被哪些整数整除?可以被哪些整数整除?解决解决这个问题,需要对这个问题,需要对630进进行分解质因数行分解质因数630=23257类似地,在式的变形中,类似地,在式的变形中,类似地,在式的变形中,类似地,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式有时需要将一个多项式写成几个整式的乘积的形式有时需要将一个多项式写成几个整式的乘积的形式有时需要将一个多项式写成几个整式的乘积的形式以便于更好的解决一些问题以便于更好的解决一些问题以便于更好的解决一些问题以便于更好的解决一些问题新课引入新课引入试试看试试看(将下列多项式写成几个整式的乘积将下列多项式写成几个整式的乘积)回忆前面整式的乘法回忆前面整式的乘法上面我们把一个上面我们把一个多项式多项式化成了几个化成了几个整整式式的的积积的形式,像这样的式子变形叫做把的形式,像这样的式子变形叫做把这个多项这个多项式式 ,也叫做把这个多项,也叫做把这个多项式式 。分解因式分解因式因式分解因式分解因式分解因式分解整式乘法整式乘法因式分解与整式乘法是因式分解与整式乘法是逆变形逆变形 依依照定义,判断下列变形是不是照定义,判断下列变形是不是因式分解因式分解(把(把多项式多项式化成几个化成几个整式整式的的积积)m(a+b+c)=ma+mb+mc下面两个式子中哪个是因式分解?下面两个式子中哪个是因式分解?在式在式子子ma+mb+mc中,中,m是这个多项是这个多项式中每一个项都含有的因式,叫式中每一个项都含有的因式,叫做做 。公因式公因式ma+mb+mc=m(a+b+c)ma+mb+mc=m(a+b+c)在下在下面这个式子的因式分解过程中,面这个式子的因式分解过程中,先先找到找到这个多项式的这个多项式的公因式公因式,再将,再将原式除原式除以公因式以公因式,得到一个新多项式,将这个多,得到一个新多项式,将这个多项式与公因式相乘即可。项式与公因式相乘即可。这种方法叫做这种方法叫做提公因式法提公因式法。提公因式法一般步骤:提公因式法一般步骤:1、找到该多项式的公因式,、找到该多项式的公因式,2、将原式除以公因式,得到一个新多项式,、将原式除以公因式,得到一个新多项式,3、把、把它与公因式相乘。它与公因式相乘。如何准确地找到多项如何准确地找到多项式的公因式呢?式的公因式呢?1、系数、系数 所有项的系数的所有项的系数的最大公因数最大公因数 2、字母、字母 应提取每一项都有的字母,应提取每一项都有的字母,且字母的且字母的指数取最低指数取最低的的 3、系数与字母相乘、系数与字母相乘最大公因数为最大公因数为3=3a的最低指数为的最低指数为1ab的最低指数为的最低指数为1b(3a5bc)=4st2(3s22t+1)pq(5q+7p+3)=第第 3课时课时第第 2课时课时复习回顾复习回顾还记得学过的两个最基本的乘法公式吗?还记得学过的两个最基本的乘法公式吗?平方差公式:平方差公式:完全平方公式:完全平方公式:计计算算:=(999+1)(9991)此处运用了什么公式此处运用了什么公式?新课引入新课引入试计算:试计算:9992 1 12=1000998=998000平方差公式平方差公式逆用逆用因式分解因式分解:(1)x2 ;(2)y2 4 2522 52=(x+2)(x2)=(y+5)(y5)这些计算过程中都这些计算过程中都逆用逆用了平方差公式了平方差公式即:即:此即运用平方差公式进行因式分解此即运用平方差公式进行因式分解 用文字表述为:用文字表述为:两个数的平方差等于这两个两个数的平方差等于这两个数的和与这两个数的差的积。数的和与这两个数的差的积。尝试练尝试练习习(对下列各式因式分解对下列各式因式分解):a2 9=_ 49 n2=_ 5s2 20t2=_ 100 x2 9y2=_(a+3)(a3)(7+n)(7n)5(s+2t)(s2t)(10 x+3y)(10 x3y)=y2 4x2=(y+2x)(y2x)=(x2)2 12=(x2+1)(x21)4x2+y2 x4 1(x21)=(4x2 y2)=(2x+y)(2xy)(x+1)(x1)因式分解一定要分解彻底因式分解一定要分解彻底!x2 x6=x2 (x3)2=(x+x3)(xx3)=x(1+x2)x(1x2)=x2(1+x2)(1+x)(1x)x2 x6=x2(1x4)=x2(1+x2)(1x2)=x2(1+x2)(1+x)(1x)在我们现学过的因式分解方法中,在我们现学过的因式分解方法中,先考虑先考虑提取公因式提取公因式,再考虑用,再考虑用公式法公式法。6x3 54xy2=6x(x29y2)=6x(x+3y)(x3y)(x+p)2 (xq)2=(x+p)+(xq)(x+p)(xq)=(2x+pq)(p+q)YXYXYX复习回顾复习回顾还记得前面学的完全平方公式吗?还记得前面学的完全平方公式吗?计计算算:新课引入新课引入试计算:试计算:9992+1998 +129991=(999+1)2=106此处运用了什么公式此处运用了什么公式?完全平方公式完全平方公式逆用逆用 就像平方差公式一样,就像平方差公式一样,完全平方完全平方公式公式也可以也可以逆用逆用,从而进行一些简便,从而进行一些简便计算与因式分解。计算与因式分解。即:即:这个公式可以用文字表述为:这个公式可以用文字表述为:两个数的平方和加上(或减去)两个数的平方和加上(或减去)这两个数的积的这两个数的积的两两倍,等于这两个倍,等于这两个数的和(或差)的平方。数的和(或差)的平方。牛刀小试牛刀小试(对下列各式因式分解对下列各式因式分解):a2+6a+9=_ n210n+25=_ 4t28t+4=_ 4x212xy+9y2=_(a+3)2(n5)24(t1)2(2x3y)2完全平方式的特点:完全平方式的特点:1、必须是、必须是三项式三项式(或可以看成三项的)(或可以看成三项的)2、有两个、有两个同号同号的平方项的平方项 3、有一个乘积项(等于平方项底数的、有一个乘积项(等于平方项底数的2倍倍)简记口诀:简记口诀:首平方,尾平方,首尾两倍在中央。首平方,尾平方,首尾两倍在中央。16x2+24x+9 4x2+4xy y2 4x2 8xy+4y2=(4x+3)2=(4x24xy+y2)=(2xy)2=4(x22xy+y2)=4(xy)2 2a2+(p+q)2 12(p+q)+36a41=(a21)2=(a+1)2(a1)2=(a+1)(a1)2=(p+q6)2XXX知识结构知识结构因式分解因式分解常用方法常用方法提公因式法提公因式法公式法公式法十字相乘法十字相乘法分组分解法分组分解法拆项添项法拆项添项法配方法配方法待定系数法待定系数法求根法求根法一、提公因式法一、提公因式法 只需只需找到找到多项式中的多项式中的公因式公因式,然后用然后用原多项式除以公因式原多项式除以公因式,把所,把所得的商与公因式相乘即可。往往与得的商与公因式相乘即可。往往与其他方法结合起来用。其他方法结合起来用。提公因式法提公因式法随堂练习:随堂练习:1 1)15(15(mm n n)+13()+13(n n mm)2 2)4(4(x x+y y)+4()+4(x x33y y)二、公式法二、公式法 只需发现多项式的只需发现多项式的特点特点,再,再将符合其形式的公式套进去即可将符合其形式的公式套进去即可完成因式分解,有时需和别的方完成因式分解,有时需和别的方法法结合结合或多种公式或多种公式结合结合。接下来是一些常用的乘法公接下来是一些常用的乘法公式,可以逆用进行因式分解。式,可以逆用进行因式分解。常用公式常用公式1、(a+b)(ab)=a2b2(平方差公式)平方差公式)2、(ab)2=a22ab+b2(完全平方公式)(完全平方公式)3、(a+b+c)2=a2+b2+c2+2ab+2ac+2bc4、a3+b3=(a+b)(a2ab+b2)及及 a3b3=(ab)(a2+ab+b2)(立方和、差公式)(立方和、差公式)5、(a+b)3=a3+3a2b+3ab2+b3(完全立方和公式)(完全立方和公式)6、(x+p)(x+q)=x2+(p+q)x+pq7、x2+y2+z2+xy+xz+yz公式推导公式推导这是公式这是公式x2+y2+z2+xy+xz+yz的推导过程的推导过程不要与不要与(x+y+z)2=x2+y2+z2+2xy+2xz+2yz混淆混淆公式法公式法随堂练习:随堂练习:1 1)(a a2 21010a a+25)(+25)(a a2 2 25)25)2 2)x x3 3+3+3x x2 2+3 3x x+1+1二、公式法二、公式法 只需发现多项式的只需发现多项式的特点特点,再,再将符合其形式的公式套进去即可将符合其形式的公式套进去即可完成因式分解,有时需和别的方完成因式分解,有时需和别的方法法结合结合或多种公式或多种公式结合结合。三、十字相乘法三、十字相乘法前面出现了一个公式:前面出现了一个公式:前面出现了一个公式:前面出现了一个公式:(x+p)(x+q)=x2+(p+q)x+pq我们可以用它进行因式分解我们可以用它进行因式分解我们可以用它进行因式分解我们可以用它进行因式分解(适用于二次三项式)(适用于二次三项式)(适用于二次三项式)(适用于二次三项式)例例1:因式分解:因式分解x2+4x+3可以看出常数项可以看出常数项可以看出常数项可以看出常数项 3=3=1 3而一次项系数而一次项系数而一次项系数而一次项系数 4=4=1+3原式原式原式原式=(=(x x+1)()(x x+3)暂且称为暂且称为暂且称为暂且称为p、q型因式分解型因式分解例例2:因式分解:因式分解x27x+10可以看出常数项可以看出常数项可以看出常数项可以看出常数项10=10=(2)(5)而一次项系数而一次项系数而一次项系数而一次项系数 7=7=(2)+(5)原式原式原式原式=(=(x x2)()(x x5)这个公式简单的说,这个公式简单的说,这个公式简单的说,这个公式简单的说,就是把常数项拆成两个数的乘积,就是把常数项拆成两个数的乘积,就是把常数项拆成两个数的乘积,就是把常数项拆成两个数的乘积,而这两个数的和刚好等于一次项系数而这两个数的和刚好等于一次项系数而这两个数的和刚好等于一次项系数而这两个数的和刚好等于一次项系数十字相乘法十字相乘法随堂练习:随堂练习:1 1)a a2 266a a+5 2+5 2)a a2 2 5 5a a+6+63 3)x x2 2(2(2mm+1)+1)x x+mm2 2+mm22三、十字相乘法三、十字相乘法试因式分解试因式分解6x2+7x+2。这里就要用到这里就要用到这里就要用到这里就要用到十字相乘法十字相乘法(适用于二次三项式)(适用于二次三项式)。既然是二次式,就可以写成既然是二次式,就可以写成既然是二次式,就可以写成既然是二次式,就可以写成(axax+b b)()(cxcx+d d)的形式。的形式。的形式。的形式。(axax+b b)()(cxcx+d d)=)=acx x2 2+(ad+bc)x x+bd 所所所所以,需要将以,需要将以,需要将以,需要将二次项系数二次项系数与与与与常数项常数项分别拆成分别拆成分别拆成分别拆成两个数的积,而这四个数中,两个数的积与另外两个数的积,而这四个数中,两个数的积与另外两个数的积,而这四个数中,两个数的积与另外两个数的积,而这四个数中,两个数的积与另外两个数的积之和刚好等于一次项系数,那么因式两个数的积之和刚好等于一次项系数,那么因式两个数的积之和刚好等于一次项系数,那么因式两个数的积之和刚好等于一次项系数,那么因式分解就成功了。分解就成功了。分解就成功了。分解就成功了。=173 x2+11 x+106 x2+7 x+223124+3=76x2+7x+2=(2x+1)(3x+2)13522+15=1113255+63x2+11x+10=(x+2)(3x+5)=65 x2 6 xy 8 y2试因式分解试因式分解5x26xy8y2。这里仍然可以用这里仍然可以用这里仍然可以用这里仍然可以用十字相乘法十字相乘法。15244 105x26xy8y2=(x2y)(5x+4y)简记口诀:简记口诀:首尾分解,首尾分解,交叉相乘,交叉相乘,求和凑中。求和凑中。十字相乘法十字相乘法随堂练习:随堂练习:1 1)4 4a a2 299a a+2+22 2)7 7a a2 21919a a663 3)2(2(x x2 2+y y2 2)+5)+5xyxy四、分组分解法四、分组分解法 要发现式中隐含的条件,通要发现式中隐含的条件,通过交换项的位置,添、去括号等过交换项的位置,添、去括号等一些一些变换变换达到因式分解的目的。达到因式分解的目的。例例1:因式分解:因式分解 abac+bdcd。解:原式解:原式=(ab ac)+(bd cd)=a(b c)+d(b c)=(a+d)(b c)还有别还有别的解法的解法吗?吗?四、分组分解法四、分组分解法 要发现式中隐含的条件,通要发现式中隐含的条件,通过交换项的位置,添、去括号等过交换项的位置,添、去括号等一些一些变换变换达到因式分解的目的。达到因式分解的目的。例例1:因式分解:因式分解 abac+bdcd。解:原式解:原式=(ab+bd)(ac+cd)=b(a+d)c(a+d)=(a+d)(b c)例例2:因式分解:因式分解 x5+x4+x3+x2+x+1。解:原式解:原式=(x5+x4+x3)+(x2+x+1)=(x3+1)(x2+x+1)=(x+1)(x2x+1)(x2+x+1)立方和公式立方和公式分组分解法分组分解法随堂练习:随堂练习:1 1)xyxy xzxz y y2 2+2+2yzyz z z2 22 2)a a2 2 b b2 2 c c2 222bcbc22a a+1+1回顾例题:回顾例题:因式分解因式分解 x5+x4+x3+x2+x+1。另解:原式另解:原式=(x5+x4)+(x3+x2)+(x+1)=(x+1)(x4+x2+1)=(x+1)(x4+2x2+1x2)=(x+1)(x2+1)2x2 =(x+1)(x2+x+1)(x2x+1)五五*、拆项添项法、拆项添项法怎么结果怎么结果与刚才不与刚才不一样呢?一样呢?因为它还因为它还可以继续可以继续因式分解因式分解 拆项添项法对数学能力有着更拆项添项法对数学能力有着更高的要求,需要观察到多项式中应高的要求,需要观察到多项式中应拆哪一项使得接下来可以继续因式拆哪一项使得接下来可以继续因式分解,要对结果有一定的分解,要对结果有一定的预见性预见性,尝试较多,做题较繁琐。尝试较多,做题较繁琐。最好能根据现有多项式内的项最好能根据现有多项式内的项猜测猜测可能需要使用的公式,有时要可能需要使用的公式,有时要根据形式根据形式猜测猜测可能的系数。可能的系数。五五*、拆项添项法、拆项添项法因式分解因式分解 x4+4解:原式解:原式=x4+4x2+4 4x2 =(x2+2)2 (2x)2 =(x2+2x+2)(x22x+2)都是平方项都是平方项猜测使用完全平方公式猜测使用完全平方公式完全平方公式完全平方公式平方差公式平方差公式拆项添项法拆项添项法随堂练习:随堂练习:1 1)x x4 42323x x2 2y y2 2+y y4 42 2)(mm2 21)(1)(n n2 21)+41)+4mnmn配方法配方法 配方法是一种特殊的拆项添项配方法是一种特殊的拆项添项法,将多项式法,将多项式配成完全平方式配成完全平方式,再,再用平方差公式进行分解。用平方差公式进行分解。因式分解因式分解 a2b2+4a+2b+3。解:原式解:原式=(a2+4a+4)(b22b+1)=(a+2)2 (b1)2 =(a+b+1)(ab+3)配方法配方法 (拆项添项法拆项添项法)分组分解法分组分解法完全平方公式完全平方公式平方差公式平方差公式二、新课二、新课1.我们把我们把叫做叫做x的二次三项式。的二次三项式。这个式子的这个式子的x的最高次项是的最高次项是2,并有一次项和常数项,并有一次项和常数项,共有三项。共有三项。2.请同学说出请同学说出x的二次三项式的二次三项式和和x的一元二次方程的一元二次方程形式上有什么不同?形式上有什么不同?答案:二次三项式是代数式,没有等号,方程有等号。答案:二次三项式是代数式,没有等号,方程有等号。3.用配方法把用配方法把分解因式。分解因式。分析:对分析:对再添再添一次项系数的一半的平方一次项系数的一半的平方(注意:因为因式分解是恒等变形,所以必须同时注意:因为因式分解是恒等变形,所以必须同时 减去一次项系数一半的平方)减去一次项系数一半的平方)解:解:这是配方的关键4.分解因式分解因式分析:把二次项系数化为分析:把二次项系数化为1,便于配方,但不能各项,便于配方,但不能各项 除以除以2,而是各项提取公因数,而是各项提取公因数2我们知道在解一元二次方程时,配方法的步骤是固定我们知道在解一元二次方程时,配方法的步骤是固定模式的,即模式的,即“千篇一律千篇一律”,它的一般模式就是解一元二,它的一般模式就是解一元二次方程的求根公式法。由此推想,用配方法因式分解次方程的求根公式法。由此推想,用配方法因式分解必定与方程的根有关系,这个关系是什么必定与方程的根有关系,这个关系是什么解:解:从从以上例以上例2的因式分解来研究。的因式分解来研究。与与二次三项式二次三项式对应的一元二次方程是对应的一元二次方程是=0 这个方程的两根是这个方程的两根是由此可以看出例由此可以看出例2的的因式分解的结果与两根的关系是什么?因式分解的结果与两根的关系是什么?这个关系是:二次三项式系数乘以这个关系是:二次三项式系数乘以x 减去一个根的差,减去一个根的差,再乘以再乘以x减去另一个根所得的差。减去另一个根所得的差。以上的结论怎样证明?以上的结论怎样证明?证明:设一元二次方程证明:设一元二次方程结论:在分解二次三项式结论:在分解二次三项式例如,已知一元二次方程例如,已知一元二次方程就就可以把二次三项式分解因式,得可以把二次三项式分解因式,得三、例题讲解三、例题讲解例例1 把把分解因式分解因式此步的目的是去掉括号内的分母例例2本题是关于本题是关于x的二次三项式,所以应把的二次三项式,所以应把y看作常数看作常数注意:注意:1.因式分解是恒等变形,所以公式因式分解是恒等变形,所以公式中的因式中的因式 千万不能忽略。千万不能忽略。2.在分解二次三项式在分解二次三项式的的因式时,可先用求根公式求出方程因式时,可先用求根公式求出方程的的两个根两个根x1,x2然后然后,写成写成a2.选择题选择题(1)已知方程)已知方程()(2)下列二次三项式在实数范围内不能分解因式的是()下列二次三项式在实数范围内不能分解因式的是()DD五、本课小结五、本课小结1.对于不易用以前学过的方法:对于不易用以前学过的方法:分解二次三项式分解二次三项式宜用一元二次方程的宜用一元二次方程的求根公式分解因式。求根公式分解因式。2.当当当当(例如:分解因式例如:分解因式在在实数范围内不能分解实数范围内不能分解)3.用求根公式分解二次三项式用求根公式分解二次三项式其其程序是固定的,即:程序是固定的,即:(1)第一步:令)第一步:令(2)第二步:求出方程)第二步:求出方程的两个根的两个根;(3)写出公式)写出公式并把并把的值的值代入公式中的代入公式中的处。处。