第十章 多元相关与回归分析精选文档.ppt
第十章 多元相关与回归分析本讲稿第一页,共八十二页学习目标1.回归模型、回归方程、估计的回归方程回归模型、回归方程、估计的回归方程2.回归方程的拟合优度回归方程的拟合优度3.回归方程的显著性检验回归方程的显著性检验4.利用回归方程进行估计和预测利用回归方程进行估计和预测5.非线性回归非线性回归6.用用 SPSS 进行回归分析进行回归分析本讲稿第二页,共八十二页10.1 多元线性回归模型10.1.1 多元回归模型与回归方程多元回归模型与回归方程10.1.2 估计的多元回归方程估计的多元回归方程10.1.3 参数的最小二乘估计参数的最小二乘估计本讲稿第三页,共八十二页多元回归模型与回归方程本讲稿第四页,共八十二页多元回归模型(multiple regression model)1.一个因变量与两个及两个以上自变量的回归2.描述因变量 y 如何依赖于自变量 x1,x2,xk 和误差项 的方程,称为多元回归模型3.涉及 k 个自变量的多元回归模型可表示为 0 0 ,1 1,k k是参数是参数 是被称为误差项的随机变量是被称为误差项的随机变量 y y 是是x x1,1,,x x2 2 ,x xk k 的线性函数加上误差项的线性函数加上误差项 包包含含在在y y里里面面但但不不能能被被k k个个自自变变量量的的线线性性关关系系所所解解释的变异性释的变异性本讲稿第五页,共八十二页多元回归模型(基本假定)1.误差项是一个期望值为0的随机变量,即E()=02.对于自变量x1,x2,xk的所有值,的方差 2都相同3.误差项是一个服从正态分布的随机变量,即N(0,2),且相互独立本讲稿第六页,共八十二页多元回归方程(multiple regression equation)1.描述因变量 y 的平均值或期望值如何依赖于自变量 x1,x2,xk的方程2.多元线性回归方程的形式为 E(y)=0+1 x1+2 x2+k xk 1 1,k k称为偏回归系数称为偏回归系数 i i 表表示示假假定定其其他他变变量量不不变变,当当 x xi i 每每变变动动一个单位时,一个单位时,y y 的平均变动值的平均变动值本讲稿第七页,共八十二页二元回归方程的直观解释二元线性回归模型二元线性回归模型二元线性回归模型二元线性回归模型(观察到的观察到的y y)回归面回归面 0 0 i ix x1 1y yx x2 2(x x1 1,x x2 2)本讲稿第八页,共八十二页估计的多元回归方程本讲稿第九页,共八十二页估计的多元回归的方程估计的多元回归的方程(estimated multiple regression equation)(estimated multiple regression equation)1.用样本统计量 估计回归方程中的 参数 时得到的方程2.由最小二乘法求得3.一般形式为 是是 的的估计值估计值 是 y y 的估计值的估计值 本讲稿第十页,共八十二页参数的最小二乘估计本讲稿第十一页,共八十二页参数的最小二乘法2.2.求求解解各回归参数的标准方程如下1.1.使使因变量的观察值与估计值之间的离差平方和达到最小来求得 。即。即本讲稿第十二页,共八十二页参数的最小二乘法(例题分析)【例例】一一家家大大型型商商业业银银行行在在多多个个地地区区设设有有分分行行,为为弄弄清清楚楚不不良良贷贷款款形形成成的的原原因因,抽抽取取了了该该银银行行所所属属的的2525家家分分行行20022002年年的的有有关关业业务务数数据据。试试建建立立不不良良贷贷款款y与贷款余额x1、累累计计应应收收贷贷款款x2、贷款项目个数x3和固定资产投资额x4 4的线性回归方程,并解释各回归系数的含义 本讲稿第十三页,共八十二页10.2 10.2 回归方程的拟合优度回归方程的拟合优度10.2.1 多重判定系数多重判定系数10.2.2 估计标准误差估计标准误差本讲稿第十四页,共八十二页多重判定系数本讲稿第十五页,共八十二页多重判定系数(multiple coefficient of determination)1.1.回归平方和占总平方和的比例回归平方和占总平方和的比例2.2.计算公式为计算公式为3.3.因因变变量量取取值值的的变变差差中中,能能被被估估计计的的多多元元回回归归方方程程所解释的比例所解释的比例 本讲稿第十六页,共八十二页在样本容量一定的条件下,不断向模型中在样本容量一定的条件下,不断向模型中增加自变量,即使新增的变量与增加自变量,即使新增的变量与Y Y不相关,不相关,模型的模型的R R2 2也可能上升,至少不会下降。也可能上升,至少不会下降。在实际应用中,研究人员更欢迎简单的模在实际应用中,研究人员更欢迎简单的模型,这样的模型更简单和易于解释。如果型,这样的模型更简单和易于解释。如果根据根据R R2 2来选择模型,显然会倾向于复杂的模来选择模型,显然会倾向于复杂的模型。型。更常用的指标是更常用的指标是“修正后的修正后的R Ra a2 2”。修正的判定系数修正的判定系数本讲稿第十七页,共八十二页修正多重判定系数(adjusted multiple coefficient of determination)1.用样本量n和自变量的个数k去修正R2得到 2.计算公式为3.避免增加自变量而高估 R24.意义与 R2类似5.数值小于R2本讲稿第十八页,共八十二页估计标准误差 Se1.对误差项的标准差 的一个估计值2.衡量多元回归方程的拟合优度3.计算公式为本讲稿第十九页,共八十二页12.3 显著性检验12.3.1 线性关系检验线性关系检验12.3.2 回归系数检验和推断回归系数检验和推断本讲稿第二十页,共八十二页线性关系检验本讲稿第二十一页,共八十二页线性关系检验1.检验因变量与所有自变量之间的线性关系是否显著2.也被称为总体的显著性总体的显著性检验3.检验方法是将回归均方(MSR)同残差均方(MSE)加以比较,应应用用 F 检检验验来分析二者之间的差别是否显著如果是显著的,因变量与自变量之间存在线性关系如果不显著,因变量与自变量之间不存在线性关系本讲稿第二十二页,共八十二页线性关系检验1.1.提出假设提出假设H H0 0:1 1 2 2 k k=0 =0 线性关系不显著线性关系不显著H H1 1:1 1,2 2,k k至少有一个不等于至少有一个不等于0 02.2.2.2.计算检验统计量计算检验统计量计算检验统计量计算检验统计量F F3.3.3.3.确定显著性水平确定显著性水平确定显著性水平确定显著性水平 和分子自由度和分子自由度和分子自由度和分子自由度k k k k、分母自由度、分母自由度、分母自由度、分母自由度n-kn-kn-kn-k-1-1-1-1找出临界值找出临界值找出临界值找出临界值F F 4.4.作出决策:若作出决策:若F F F F F F F F ,拒绝,拒绝,拒绝,拒绝H H0 0 0 0本讲稿第二十三页,共八十二页回归系数检验和推断本讲稿第二十四页,共八十二页回归系数检验和推断 回归方程显著,并不意味着每个解释变量对因变量回归方程显著,并不意味着每个解释变量对因变量Y Y的影的影响都重要响都重要,因此需要进行检验:因此需要进行检验:回归系数检验的必要性回归方程显著回归方程显著每个回归系数每个回归系数都显著都显著本讲稿第二十五页,共八十二页回归系数的检验回归系数的检验(步骤步骤)1.提出假设H0:i=0 (自变量 xi 与 因变量 y 没有线性关系)H1:i 0 (自变量 xi 与 因变量 y有线性关系)2.计算检验的统计量 t3.确定显著性水平确定显著性水平,并进行决策 t t t t,拒绝,拒绝H H0 0;t t t (25-2)=2.0687,所所以以均均拒拒绝绝原原假假设设,说说明明这这4个个自自变变量量两两两两之之间间都都有有显显著著的的相相关关关关系系2.由由 表表 中中 的的 结结 果果 可可 知知,回回 归归 模模 型型 的的 线线 性性 关关 系系 显显 著著(Significance-F1.03539E-06=0.05)。这也暗示了模型中存在多重共线性。这也暗示了模型中存在多重共线性3.固固定定资资产产投投资资额额的的回回归归系系数数为为负负号号(-0.029193),与与预预期期的的不一致不一致本讲稿第三十五页,共八十二页多重共线性问题的处理多重共线性问题的处理本讲稿第三十六页,共八十二页多重共线性(问题的处理)1.1.将将一一个个或或多多个个相相关关的的自自变变量量从从模模型型中中剔剔除除,使保留的自变量尽可能不相关使保留的自变量尽可能不相关如果要在模型中保留所有的自变量,则应如果要在模型中保留所有的自变量,则应避免根据避免根据 t t 统计量对单个参数进行检验统计量对单个参数进行检验对对因因变变量量值值的的推推断断(估估计计或或预预测测)的的限限定定在在自自变量样本值的范围内变量样本值的范围内本讲稿第三十七页,共八十二页多元回归中的变量筛选多元回归中的变量筛选在多元回归中,预先选定的自变量不一定都对在多元回归中,预先选定的自变量不一定都对Y Y有显有显著的影响。有一些统计方法可以帮助我们从众多可能著的影响。有一些统计方法可以帮助我们从众多可能的自变量中筛选出重要的自变量。的自变量中筛选出重要的自变量。SPSSSPSS软件提供了多种筛选自变量的方法:软件提供了多种筛选自变量的方法:“向前引入法(向前引入法(ForwardForward)”“向后剔除法(向后剔除法(BackwardBackward)”“逐步引入逐步引入剔除法(剔除法(StepwiseStepwise)”本讲稿第三十八页,共八十二页变量选择过程1.1.在建立回归模型时,对自变量进行筛选在建立回归模型时,对自变量进行筛选2.2.选择自变量的原则是对统计量进行显著性检验选择自变量的原则是对统计量进行显著性检验将将一一个个或或一一个个以以上上的的自自变变量量引引入入到到回回归归模模型型中中时时,是是否否使使得得残残差差平平方方和和(SSESSE)有有显显著著的的减减少少。如如果果增增加加一一个个自自变变量量使使SSESSE的的减减少少是是显显著著的的,则则说说明明有有必必要要将将这这个个自自变变量量引引入入回回归归模模型型,否否则则,就没有必要将这个自变量引入回归模型就没有必要将这个自变量引入回归模型确确定定引引入入自自变变量量是是否否使使SSESSE有有显显著著减减少少的的方方法法,就就是是使使用用F F统统计计量量的的值值作作为为一一个个标标准准,以以此此来来确确定定是是在在模模型型中中增增加加一一个个自自变变量,还是从模型中剔除一个自变量量,还是从模型中剔除一个自变量3.3.变量选择的方法主要有:变量选择的方法主要有:逐步回归、向前选择、向后剔除逐步回归、向前选择、向后剔除本讲稿第三十九页,共八十二页向前选择(forward selection)1.1.从模型中没有自变量开始从模型中没有自变量开始2.2.对对k k个个自自变变量量分分别别拟拟合合对对因因变变量量的的一一元元线线性性回回归归模模型型,共共有有k k个个,然然后后找找出出F F统统计计量量的的值值最最高高的的模模型型及及其其自自变变量量,并将其首先引入模型并将其首先引入模型 3.3.分别拟合引入模型外的分别拟合引入模型外的k k-1-1个自变量的线性回归模型个自变量的线性回归模型 4.4.如如此此反反复复进进行行,直直至至模模型型外外的的自自变变量量均均无无统统计计显显著著性为止性为止本讲稿第四十页,共八十二页向后剔除(backward elimination)1.1.先先对对因因变变量量拟拟合合包包括括所所有有k k个个自自变变量量的的回回归归模模型型。然然后后考考察察p p(p p k k)个个去去掉掉一一个个自自变变量量的的模模型型(这这些些模模型型中中每每一一个个都都有有的的k k-1-1个个自自变变量量),使使模模型型的的SSESSE值值减减小小最最少少的的自自变变量量被被挑挑选选出出来来并并从从模模型型中中剔剔除除2.2.考考察察p-1p-1个个再再去去掉掉一一个个自自变变量量的的模模型型(这这些些模模型型中中在在每每一一个个都都有有k k-2-2个个的的自自变变量量),使使模模型型的的SSESSE值值减减小小最最少少的的自自变变量量被被挑挑选选出出来来并并从从模模型中剔除型中剔除3.3.如如此此反反复复进进行行,一一直直将将自自变变量量从从模模型型中中剔剔除除,直直至至剔剔除除一一个个自变量不会使自变量不会使SSESSE显著减小为止显著减小为止本讲稿第四十一页,共八十二页逐步回归的思想逐步回归的思想将变量逐一引入回归方程,先建立与将变量逐一引入回归方程,先建立与y y相关最密切的相关最密切的一元线性回归方程,然后再找出第二个变量,建立二元一元线性回归方程,然后再找出第二个变量,建立二元线性回归方程,线性回归方程,。在每一步中都要对引入变量的显著性作检验,仅当在每一步中都要对引入变量的显著性作检验,仅当其显著时才引入,而每引入一个新变量后,对前面其显著时才引入,而每引入一个新变量后,对前面已引进的变量又要逐一检验,一旦发现某变量变得已引进的变量又要逐一检验,一旦发现某变量变得不显著了,就要将它剔除。不显著了,就要将它剔除。这些步骤反复进行,直到引入的变量都是显著的而没有这些步骤反复进行,直到引入的变量都是显著的而没有引入的变量都是不显著的时,就结束挑选变量的工作。引入的变量都是不显著的时,就结束挑选变量的工作。可以设定引入和删除变量的条件。可以设定引入和删除变量的条件。本讲稿第四十二页,共八十二页 10.5 10.5 哑变量回归哑变量回归 10.5.1 10.5.1 在模型中引进哑变量在模型中引进哑变量 10.5.2 10.5.2 含有一个哑变量的回归含有一个哑变量的回归本讲稿第四十三页,共八十二页10.5.1 在模型中引进哑变量本讲稿第四十四页,共八十二页哑变量(dummy variable)也称虚拟变量。用数字代码表示的定性自变量哑变量可有不同的水平只有两个水平的哑变量比如,性别(男,女)有两个以上水平的哑变量贷款企业的类型(家电,医药,其他)哑变量的取值为0,1本讲稿第四十五页,共八十二页在回归中引进哑变量1.回归模型中使用哑变量时,称为哑变量回归2.当定性变量只有两个水平时,可在回归中引入一个哑变量比如,性别比如,性别(男,女男,女)3.一般而言,如果定性自变量有k个水平,需要在回归中模型中引进k-1个哑变量本讲稿第四十六页,共八十二页在回归中引进哑变量(例题分析)例例为研究考试成绩与性别之间的关系,从某大学商学院随机抽取男女学生各8名,得到他们的市场营销学课程的考试成绩如右表 本讲稿第四十七页,共八十二页10.5.2 含有一个哑变量的回归 本讲稿第四十八页,共八十二页在回归中引进哑变量(例题分析)【例例】建立考试分数与性别之间的线性回归方程,并解释回归系数的含义本讲稿第四十九页,共八十二页哑变量回归(例题分析)引进哑变量时,回归方程表示为引进哑变量时,回归方程表示为E E(y y)=)=0 0+1 1x x男男(x x=0)=0):E E(y y)=)=0 0男学生考试成绩的期望值男学生考试成绩的期望值女女(x x=1)=1):E E(y y)=)=0 0+1 1女学生考试成绩的期望值女学生考试成绩的期望值注意:当指定哑变量注意:当指定哑变量0 0,1 1时时 0 0总是代表与哑变量值总是代表与哑变量值0 0所对应的那个分类变量水平的平均值所对应的那个分类变量水平的平均值 1 1总总是是代代表表与与哑哑变变量量值值1 1所所对对应应的的那那个个分分类类变变量量水水平平的的平平均均值值与与哑哑变量值变量值0 0所对应的那个分类变量水平的平均值的差值,即所对应的那个分类变量水平的平均值的差值,即 平均值的差值平均值的差值 =(=(0 0+1 1)-)-0 0=1 1本讲稿第五十页,共八十二页哑变量回归(例题分析)考试成绩与性别的回归男男学学生生考考试试 分分 数数 的的平均值平均值女女学学生生与与男男学学生生平平均均考考试试分分数数的的差值差值本讲稿第五十一页,共八十二页用SPSS进行哑变量回归(有一个哑变量和有一个数值变量)第第1步步:选择【Analyze】,并选择【General Linear Model-Univaiate】进入主对话框第第2步步:将因变量(考试成绩)选入【Dependent Variable】,将自变量(性别)选入【Fixed Factor(s)】(模型中还含有一个数值自变量时,将数值自变量选入【Covariate(s)】)第第3步步:点击【Model】,并点击【Custom】;将性别F选入【Model】(若模型中还含有工作年限自变量时,将工作年限C也选入【Model】;在【Build Term(s)】下选择【Main effects】。点击【Continue】回到主对话框。点击【Options】,在【Display】下选中【Parameter estimates】(估计模型中的参数)。点击【Continue】回到主对话框。点击【OK】本讲稿第五十二页,共八十二页哑变量回归哑变量回归(例题分析例题分析只含一个哑变量只含一个哑变量)SPSS的输出结果的输出结果 方方差差分分析析表表:F=5.326,Sig.=0.037,回归模型显著,回归模型显著男男=1,女,女=0。女女学学生生考考试试成成绩绩的的期期望望值值=81.75分分;男男学学生生比比女学生平均低女学生平均低14.875分分本讲稿第五十三页,共八十二页哑变量回归(例题分析)【例例】为研究工资水平与工作年限和性别之间的关系,在某行业中随机抽取10名职工,所得数据如右表本讲稿第五十四页,共八十二页哑变量回归(例题分析Excel)Excel输出的结果输出的结果本讲稿第五十五页,共八十二页哑变量回归(例题分析SPSS)本讲稿第五十六页,共八十二页哑变量回归(例题分析SPSS)用工作年限和性别预测的月工资水平及其残差用工作年限和性别预测的月工资水平及其残差 本讲稿第五十七页,共八十二页哑变量回归哑变量回归(例题分析例题分析)引进哑变量时,回归方程写为引进哑变量时,回归方程写为 E E(y y)=)=0 0+1 1x x1 1+2 2x x2 2女女(x x2 2=0)=0):E E(y y|女性女性)=)=0 0+1 1x x1 1男男(x x2 2=1)=1):E E(y y|男性男性)=()=(0 0+2 2)+)+1 1x x1 1 0 0 的含义表示:女性职工的期望月工资收入的含义表示:女性职工的期望月工资收入(x x1 1=0=0时时)(0 0+2 2)的含义表示:男性职工的期望月工资收入的含义表示:男性职工的期望月工资收入 (x x1 1=0=0时时)1 1含义表示:工作年限每增加含义表示:工作年限每增加1 1年,男性或女性工资的平均增加值年,男性或女性工资的平均增加值 2 2含含义义表表示示:男男性性职职工工的的期期望望月月工工资资收收入入与与女女性性职职工工的的期期望望月月工工资资收收入入之之间间的差值的差值 (0 0+2 2)-)-0 0=2 2本讲稿第五十八页,共八十二页例题分析例题分析【例】【例】某经济学家想调查文化程度对家庭储蓄的某经济学家想调查文化程度对家庭储蓄的影响,在一个中等收入的样本框中,随机调查了影响,在一个中等收入的样本框中,随机调查了13户高等学历家庭与户高等学历家庭与14户中低学历的家庭。因变量户中低学历的家庭。因变量y为为上一年家庭储蓄增加额,自变量上一年家庭储蓄增加额,自变量 为上一年家庭总收为上一年家庭总收入,自变量入,自变量 表示家庭学历。高学历家庭表示家庭学历。高学历家庭 ,低,低学历家庭学历家庭 ,调查数据见下表。,调查数据见下表。本讲稿第五十九页,共八十二页序号 (元)(万元)1234567891011121314152353463654686588671085123612381345236523653256325632562.33.22.83.52.63.22.63.42.22.82.33.74.02.93.801010101010110158822023711246131330188696797230915421153711374034552372104732291011851326213517846725851985207415171412本讲稿第六十页,共八十二页序号 (元)(万元)161718192021222324252627326535673658458864369047798589509865986610235101404.64.23.73.54.85.04.23.94.84.64.84.211101100000026588261178827252159310820055242431542047402324166928911505453200239471924257822944157本讲稿第六十一页,共八十二页建立建立 对对 的线性回归,并计算残差的线性回归,并计算残差本讲稿第六十二页,共八十二页两个自变量两个自变量 与与 的系数都是显著的,多重判定系数的系数都是显著的,多重判定系数 ,回归方程为,回归方程为该结果表明,中等收入的家庭每增加该结果表明,中等收入的家庭每增加1万元收入,平均万元收入,平均拿出拿出3826元作为储蓄。高学历家庭每年的平均储蓄额元作为储蓄。高学历家庭每年的平均储蓄额少于低学历的家庭,平均少少于低学历的家庭,平均少3701元。元。本讲稿第六十三页,共八十二页如果不引入学历定性变量如果不引入学历定性变量 ,用,用 对家庭年收入对家庭年收入 作作一元线性回归,得一元线性回归,得 说明拟合效果不好。说明拟合效果不好。对对 的一元回归残差的一元回归残差 见表中。见表中。本讲稿第六十四页,共八十二页如果不考虑家庭年收入如果不考虑家庭年收入 ,13户高学历家庭的平均年户高学历家庭的平均年储蓄增加额为储蓄增加额为3008.62元,元,14户低学历家庭的平均年户低学历家庭的平均年储蓄增加额为储蓄增加额为5059.36元,高学历家庭每年的储蓄额元,高学历家庭每年的储蓄额比低学历的家庭平均少比低学历的家庭平均少5059.363008.622050.74元,元,而用前面的回归法算出的值是而用前面的回归法算出的值是3701元,两者并不相等。元,两者并不相等。3701元是在假设两者的家庭年收入相等的基础上的储元是在假设两者的家庭年收入相等的基础上的储蓄差值,反映了学历高低对储蓄额的真实差异。蓄差值,反映了学历高低对储蓄额的真实差异。本讲稿第六十五页,共八十二页10.6 非线性回归非线性回归10.6.1 双曲线双曲线10.6.2 幂函数曲线幂函数曲线10.6.3 对数曲线对数曲线本讲稿第六十六页,共八十二页非线性回归非线性回归1.1.因变量因变量 y y 与与 x x 之间不是线性关系之间不是线性关系2.2.可通过变量代换转换成线性关系可通过变量代换转换成线性关系3.3.用最小二乘法求出参数的估计值用最小二乘法求出参数的估计值4.4.并并非非所所有有的的非非线线性性模模型型都都可可以以化化为为线线性性模型模型本讲稿第六十七页,共八十二页双曲线 0 0 01.基本形式:2.线性化方法令:y=1/y,x=1/x,则有y=+x3.图像本讲稿第六十八页,共八十二页幂函数曲线1.基本形式:2.线性化方法两端取对数得:lg y=lg+lg x令:y=lgy,x=lg x,则y=lg+x3.图像00 1 1 1 1 =1=1-1-1 0 0 -1-1 =-1=-1 本讲稿第六十九页,共八十二页对数曲线1.基本形式:2.线性化方法x=lnx,则有y=+x3.图像 0 0 0 0 本讲稿第七十页,共八十二页SPSS中可以进行的曲线回归包括:本讲稿第七十一页,共八十二页曲线回归的计算机实现:SpssSpss:analyzeanalyzeregressioncurve estimation;EviewsEviews:quickquickestimate equation。本讲稿第七十二页,共八十二页例题:我国我国1978197820022002年人均年人均GDPGDP数据(数据(19781978年不年不变价),试建立人均变价),试建立人均GDPGDP与时间之间的回归方程与时间之间的回归方程。本讲稿第七十三页,共八十二页1 1、画出散点图、画出散点图本讲稿第七十四页,共八十二页2 2、计算相关系数、计算相关系数本讲稿第七十五页,共八十二页3 3、进行回归、进行回归本讲稿第七十六页,共八十二页3 3、进行回归、进行回归本讲稿第七十七页,共八十二页4 4、精细比较、精细比较(1 1)二次曲线:决定系数)二次曲线:决定系数(2 2)三次曲线:决定系数)三次曲线:决定系数本讲稿第七十八页,共八十二页4 4、精细比较、精细比较(1 1)二次曲线:)二次曲线:F F检验检验(2 2)三次曲线:)三次曲线:F F检验检验本讲稿第七十九页,共八十二页4 4、精细比较、精细比较(1 1)二次曲线:回归系数)二次曲线:回归系数(2 2)三次曲线:回归系数)三次曲线:回归系数本讲稿第八十页,共八十二页本章小结本章小结1.1.变量间关系的度量变量间关系的度量2.2.回归模型、回归方程与估计的回归方程回归模型、回归方程与估计的回归方程3.3.回归直线的拟合优度回归直线的拟合优度4.4.回归分析中的显著性检验回归分析中的显著性检验5.5.用用SPSS SPSS 进行回归分析进行回归分析本讲稿第八十一页,共八十二页结结 束束本讲稿第八十二页,共八十二页