欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    管理科学决策分析 精选文档.ppt

    • 资源ID:70740404       资源大小:4.65MB        全文页数:57页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    管理科学决策分析 精选文档.ppt

    管理科学决策分析 Chapter 12-Decision Analysis1本讲稿第一页,共五十七页Chapter 12-Decision Analysis 2Components of Decision MakingDecision Making without ProbabilitiesDecision Making with ProbabilitiesDecision Analysis with Additional InformationUtilityChapter Topics本讲稿第二页,共五十七页Chapter 12-Decision Analysis 3Table 12.1Payoff TableA state of nature is an actual event that may occur in the future.A payoff table is a means of organizing a decision situation,presenting the payoffs from different decisions given the various states of nature.Decision AnalysisComponents of Decision Making本讲稿第三页,共五十七页Chapter 12-Decision Analysis 4Decision situation:Decision-Making Criteria:maximax,maximin,minimax,minimax regret,Hurwicz,and equal likelihood Table 12.2Payoff Table for the Real Estate InvestmentsDecision AnalysisDecision Making without Probabilities本讲稿第四页,共五十七页Chapter 12-Decision Analysis 5Table 12.3Payoff Table Illustrating a Maximax DecisionIn the maximax criterion the decision maker selects the decision that will result in the maximum of maximum payoffs;an optimistic criterion.Decision Making without ProbabilitiesMaximax Criterion本讲稿第五页,共五十七页Chapter 12-Decision Analysis 6Table 12.4Payoff Table Illustrating a Maximin DecisionIn the maximin criterion the decision maker selects the decision that will reflect the maximum of the minimum payoffs;a pessimistic criterion.Decision Making without ProbabilitiesMaximin Criterion本讲稿第六页,共五十七页Chapter 12-Decision Analysis 7Table 12.6 Regret Table Illustrating the Minimax Regret DecisionRegret is the difference between the payoff from the best decision and all other decision payoffs.The decision maker attempts to avoid regret by selecting the decision alternative that minimizes the maximum regret.Decision Making without ProbabilitiesMinimax Regret Criterion本讲稿第七页,共五十七页Chapter 12-Decision Analysis 8The Hurwicz criterion is a compromise between the maximax and maximin criterion.A coefficient of optimism,is a measure of the decision makers optimism.The Hurwicz criterion multiplies the best payoff by and the worst payoff by 1-.,for each decision,and the best result is selected.Decision ValuesApartment building$50,000(.4)+30,000(.6)=38,000Office building$100,000(.4)-40,000(.6)=16,000Warehouse$30,000(.4)+10,000(.6)=18,000Decision Making without ProbabilitiesHurwicz Criterion本讲稿第八页,共五十七页Chapter 12-Decision Analysis 9The equal likelihood(or Laplace)criterion multiplies the decision payoff for each state of nature by an equal weight,thus assuming that the states of nature are equally likely to occur.Decision ValuesApartment building$50,000(.5)+30,000(.5)=40,000Office building$100,000(.5)-40,000(.5)=30,000Warehouse$30,000(.5)+10,000(.5)=20,000Decision Making without ProbabilitiesEqual Likelihood Criterion本讲稿第九页,共五十七页Chapter 12-Decision Analysis 10A dominant decision is one that has a better payoff than another decision under each state of nature.The appropriate criterion is dependent on the“risk”personality and philosophy of the decision maker.Criterion Decision(Purchase)MaximaxOffice buildingMaximinApartment buildingMinimax regretApartment buildingHurwiczApartment buildingEqual likelihoodApartment buildingDecision Making without ProbabilitiesSummary of Criteria Results本讲稿第十页,共五十七页Chapter 12-Decision Analysis 11Exhibit 12.1Decision Making without ProbabilitiesSolution with QM for Windows(1 of 3)本讲稿第十一页,共五十七页Chapter 12-Decision Analysis 12Exhibit 12.2Decision Making without ProbabilitiesSolution with QM for Windows(2 of 3)本讲稿第十二页,共五十七页Chapter 12-Decision Analysis 13Exhibit 12.3Decision Making without ProbabilitiesSolution with QM for Windows(3 of 3)本讲稿第十三页,共五十七页Chapter 12-Decision Analysis 14Expected value is computed by multiplying each decision outcome under each state of nature by the probability of its occurrence.EV(Apartment)=$50,000(.6)+30,000(.4)=42,000EV(Office)=$100,000(.6)-40,000(.4)=44,000EV(Warehouse)=$30,000(.6)+10,000(.4)=22,000Table 12.7Payoff table with Probabilities for States of NatureDecision Making with ProbabilitiesExpected Value本讲稿第十四页,共五十七页Chapter 12-Decision Analysis 15The expected opportunity loss is the expected value of the regret for each decision.The expected value and expected opportunity loss criterion result in the same decision.EOL(Apartment)=$50,000(.6)+0(.4)=30,000EOL(Office)=$0(.6)+70,000(.4)=28,000EOL(Warehouse)=$70,000(.6)+20,000(.4)=50,000Table 12.8Regret(Opportunity Loss)Table with Probabilities for States of NatureDecision Making with ProbabilitiesExpected Opportunity Loss本讲稿第十五页,共五十七页Chapter 12-Decision Analysis 16Exhibit 12.4Expected Value ProblemsSolution with QM for Windows本讲稿第十六页,共五十七页Chapter 12-Decision Analysis 17Exhibit 12.5Expected Value ProblemsSolution with Excel and Excel QM(1 of 2)本讲稿第十七页,共五十七页Chapter 12-Decision Analysis 18Exhibit 12.6Expected Value ProblemsSolution with Excel and Excel QM(2 of 2)本讲稿第十八页,共五十七页Chapter 12-Decision Analysis 19The expected value of perfect information(EVPI)is the maximum amount a decision maker would pay for additional information.EVPI equals the expected value given perfect information minus the expected value without perfect information.EVPI equals the expected opportunity loss(EOL)for the best decision.Decision Making with ProbabilitiesExpected Value of Perfect Information本讲稿第十九页,共五十七页Chapter 12-Decision Analysis 20Table 12.9Payoff Table with Decisions,Given Perfect Information Decision Making with ProbabilitiesEVPI Example(1 of 2)本讲稿第二十页,共五十七页Chapter 12-Decision Analysis 21Decision with perfect information:$100,000(.60)+30,000(.40)=$72,000Decision without perfect information:EV(office)=$100,000(.60)-40,000(.40)=$44,000EVPI=$72,000-44,000=$28,000EOL(office)=$0(.60)+70,000(.4)=$28,000Decision Making with ProbabilitiesEVPI Example(2 of 2)本讲稿第二十一页,共五十七页Chapter 12-Decision Analysis 22Exhibit 12.7Decision Making with ProbabilitiesEVPI with QM for Windows本讲稿第二十二页,共五十七页Chapter 12-Decision Analysis 23A decision tree is a diagram consisting of decision nodes(represented as squares),probability nodes(circles),and decision alternatives(branches).Table 12.10Payoff Table for Real Estate Investment ExampleDecision Making with ProbabilitiesDecision Trees(1 of 4)本讲稿第二十三页,共五十七页Chapter 12-Decision Analysis 24Figure 12.1Decision Tree for Real Estate Investment ExampleDecision Making with ProbabilitiesDecision Trees(2 of 4)本讲稿第二十四页,共五十七页Chapter 12-Decision Analysis 25The expected value is computed at each probability node:EV(node 2)=.60($50,000)+.40(30,000)=$42,000EV(node 3)=.60($100,000)+.40(-40,000)=$44,000EV(node 4)=.60($30,000)+.40(10,000)=$22,000Branches with the greatest expected value are selected.Decision Making with ProbabilitiesDecision Trees(3 of 4)本讲稿第二十五页,共五十七页Chapter 12-Decision Analysis 26Figure 12.2Decision Tree with Expected Value at Probability NodesDecision Making with ProbabilitiesDecision Trees(4 of 4)本讲稿第二十六页,共五十七页Chapter 12-Decision Analysis 27Exhibit 12.8Decision Making with ProbabilitiesDecision Trees with QM for Windows本讲稿第二十七页,共五十七页Chapter 12-Decision Analysis 28Exhibit 12.9Decision Making with ProbabilitiesDecision Trees with Excel and TreePlan(1 of 4)本讲稿第二十八页,共五十七页Chapter 12-Decision Analysis 29Exhibit 12.10Decision Making with ProbabilitiesDecision Trees with Excel and TreePlan(2 of 4)本讲稿第二十九页,共五十七页Chapter 12-Decision Analysis 30Exhibit 12.11Decision Making with ProbabilitiesDecision Trees with Excel and TreePlan(3 of 4)本讲稿第三十页,共五十七页Chapter 12-Decision Analysis 31Exhibit 12.12Decision Making with ProbabilitiesDecision Trees with Excel and TreePlan(4 of 4)本讲稿第三十一页,共五十七页Chapter 12-Decision Analysis 32Decision Making with ProbabilitiesSequential Decision Trees(1 of 4)A sequential decision tree is used to illustrate a situation requiring a series of decisions.Used where a payoff table,limited to a single decision,cannot be used.Real estate investment example modified to encompass a ten-year period in which several decisions must be made:本讲稿第三十二页,共五十七页Chapter 12-Decision Analysis 33Figure 12.3Sequential Decision TreeDecision Making with ProbabilitiesSequential Decision Trees(2 of 4)本讲稿第三十三页,共五十七页Chapter 12-Decision Analysis 34Decision Making with ProbabilitiesSequential Decision Trees(3 of 4)Decision is to purchase land;highest net expected value($1,160,000).Payoff of the decision is$1,160,000.本讲稿第三十四页,共五十七页Chapter 12-Decision Analysis 35Figure 12.4Sequential Decision Tree with Nodal Expected ValuesDecision Making with ProbabilitiesSequential Decision Trees(4 of 4)本讲稿第三十五页,共五十七页Chapter 12-Decision Analysis 36Exhibit 12.13Sequential Decision Tree AnalysisSolution with QM for Windows本讲稿第三十六页,共五十七页Chapter 12-Decision Analysis 37Exhibit 12.14Sequential Decision Tree AnalysisSolution with Excel and TreePlan本讲稿第三十七页,共五十七页Chapter 12-Decision Analysis 38Bayesian analysis uses additional information to alter the marginal probability of the occurrence of an event.In real estate investment example,using expected value criterion,best decision was to purchase office building with expected value of$444,000,and EVPI of$28,000.Table 12.11Payoff Table for the Real Estate Investment ExampleDecision Analysis with Additional InformationBayesian Analysis(1 of 3)本讲稿第三十八页,共五十七页Chapter 12-Decision Analysis 39A conditional probability is the probability that an event will occur given that another event has already occurred.Economic analyst provides additional information for real estate investment decision,forming conditional probabilities:g=good economic conditionsp=poor economic conditionsP=positive economic reportN=negative economic reportP(Pg)=.80P(NG)=.20P(Pp)=.10 P(Np)=.90 Decision Analysis with Additional InformationBayesian Analysis(2 of 3)本讲稿第三十九页,共五十七页Chapter 12-Decision Analysis 40A posteria probability is the altered marginal probability of an event based on additional information.Prior probabilities for good or poor economic conditions in real estate decision:P(g)=.60;P(p)=.40Posteria probabilities by Bayes rule:(gP)=P(PG)P(g)/P(Pg)P(g)+P(Pp)P(p)=(.80)(.60)/(.80)(.60)+(.10)(.40)=.923Posteria(revised)probabilities for decision:P(gN)=.250P(pP)=.077P(pN)=.750Decision Analysis with Additional InformationBayesian Analysis(3 of 3)本讲稿第四十页,共五十七页Chapter 12-Decision Analysis 41Decision Analysis with Additional InformationDecision Trees with Posterior Probabilities(1 of 4)Decision tree with posterior probabilities differ from earlier versions in that:Two new branches at beginning of tree represent report outcomes.Probabilities of each state of nature are posterior probabilities from Bayes rule.本讲稿第四十一页,共五十七页Chapter 12-Decision Analysis 42Figure 12.5Decision Tree with Posterior Probabilities Decision Analysis with Additional InformationDecision Trees with Posterior Probabilities(2 of 4)本讲稿第四十二页,共五十七页Chapter 12-Decision Analysis 43Decision Analysis with Additional InformationDecision Trees with Posterior Probabilities(3 of 4)EV(apartment building)=$50,000(.923)+30,000(.077)=$48,460EV(strategy)=$89,220(.52)+35,000(.48)=$63,194本讲稿第四十三页,共五十七页Chapter 12-Decision Analysis 44Figure 12.6Decision Tree AnalysisDecision Analysis with Additional InformationDecision Trees with Posterior Probabilities(4 of 4)本讲稿第四十四页,共五十七页Chapter 12-Decision Analysis 45Table 12.12Computation of Posterior ProbabilitiesDecision Analysis with Additional InformationComputing Posterior Probabilities with Tables本讲稿第四十五页,共五十七页Chapter 12-Decision Analysis 46The expected value of sample information(EVSI)is the difference between the expected value with and without information:For example problem,EVSI=$63,194-44,000=$19,194The efficiency of sample information is the ratio of the expected value of sample information to the expected value of perfect information:efficiency=EVSI/EVPI=$19,194/28,000=.68Decision Analysis with Additional InformationExpected Value of Sample Information本讲稿第四十六页,共五十七页Chapter 12-Decision Analysis 47Table 12.13Payoff Table for Auto Insurance ExampleDecision Analysis with Additional InformationUtility(1 of 2)本讲稿第四十七页,共五十七页Chapter 12-Decision Analysis 48Expected Cost(insurance)=.992($500)+.008(500)=$500Expected Cost(no insurance)=.992($0)+.008(10,000)=$80Decision should be do not purchase insurance,but people almost always do purchase insurance.Utility is a measure of personal satisfaction derived from money.Utiles are units of subjective measures of utility.Risk averters forgo a high expected value to avoid a low-probability disaster.Risk takers take a chance for a bonanza on a very low-probability event in lieu of a sure thing.Decision Analysis with Additional InformationUtility(2 of 2)本讲稿第四十八页,共五十七页Chapter 12-Decision Analysis 49Decision Analysis Example Problem Solution(1 of 9)本讲稿第四十九页,共五十七页Chapter 12-Decision Analysis 50Decision Analysis Example Problem Solution(2 of 9)a.Determine the best decision without probabilities using the 5 criteria of the chapter.b.Determine best decision with probabilities assuming.70 probability of good conditions,.30 of poor conditions.Use expected value and expected opportunity loss criteria.c.Compute expected value of perfect information.d.Develop a decision tree with expected value at the nodes.e.Given following,P(Pg)=.70,P(Ng)=.30,P(Pp)=20,P(Np)=.80,determine posteria probabilities using Bayes rule.f.Perform a decision tree analysis using the posterior probability obtained in part e.本讲稿第五十页,共五十七页Chapter 12-Decision Analysis 51Step 1(part a):Determine decisions without probabilities.Maximax Decision:Maintain status quoDecisionsMaximum PayoffsExpand$800,000Status quo 1,300,000(maximum)Sell 320,000Maximin Decision:ExpandDecisionsMinimum PayoffsExpand$500,000(maximum)Status quo -150,000Sell 320,000Decision Analysis Example Problem Solution(3 of 9)本讲稿第五十一页,共五十七页Chapter 12-Decision Analysis 52Minimax Regret Decision:ExpandDecisionsMaximum RegretsExpand$500,000(minimum)Status quo 650,000Sell 980,000Hurwicz(=.3)Decision:ExpandExpand$800,000(.3)+500,000(.7)=$590,000Status quo$1,300,000(.3)-150,000(.7)=$285,000Sell$320,000(.3)+320,000(.7)=$320,000Decision Analysis Example Problem Solution(4 of 9)本讲稿第五十二页,共五十七页Chapter 12-Decision Analysis 53Equal Likelihood Decision:ExpandExpand$800,000(.5)+500,000(.5)=$650,000Status quo$1,300,000(.5)-150,000(.5)=$575,000Sell$320,000(.5)+320,000(.5)=$320,000Step 2(part b):Determine Decisions with EV and EOL.Expected value decision:Maintain status quoExpand$800,000(.7)+500,000(.3)=$710,000Status quo$1,300,000(.7)-150,000(.3)=$865,000Sell$320,000(.7)+320,000(.3)=$320,000Decision Analysis Example Problem Solution(5 of 9)本讲稿第五十三页,共五十七页Chapter 12-Decision Analysis 54Expected opportunity loss decision:Maintain status quoExpand$500,000(.7)+0(.3)=$350,000Status quo 0(.7)+650,000(.3)=$195,000Sell$980,000(.7)+180,000(.3)=$740,000Step 3(part c):Compute EVPI.EV given perfect information=1,300,000(.7)+500,000(.3)=$1,060,000EV without perfect information=$1,300,000(.7)-150,000(.3)=$865,000EVPI=$1.060,000-865,000=$195,000Decision Analysis Example Problem Solution(6 of 9)本讲稿第五十四页,共五十七页Chapter 12-Decision Analysis 55 Step 4(part d):Develop a decision tree.Decision Analysis Example Problem Solution(7 of 9)本讲稿第五十五页,共五十七页Chapter 1

    注意事项

    本文(管理科学决策分析 精选文档.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开