离散程度、正态分布.ppt
离散趋势的描述吴立娟流行病与卫生统计学系阶平楼230对以下三组数据特征进行分析对以下三组数据特征进行分析甲组甲组 26 28 30 32 34乙组乙组 24 27 30 33 36丙组丙组 26 29 30 31 34定量描述离散趋势的指标,称为变异指标。反映一组同质的计量资料观察值之间变异程度。指标 按间距计算:全距和四分位间距 按平均差距计算:离均差平方和、方差、标准差、变异系数一、全距(range)优点:简便;计量单位与原变量计量单位相同 缺点:只利用了两个极端值 没有涉及数据的集中位置的信息 不稳定,对离群值敏感 n大,R也会大用途:一般用于描述单峰对称分布小样本资料的离散程度或用于初步了解资料的变异程度二、四分位数间距分位数介于最大值和最小值之间的一个数值,它使得变量的一部分观察值小于或等于它,另一部分观察值大于或等于它。P100(max)P75P50(中位数中位数)P25P0(min)百分位数是一个位置指标,用Xp%表示。对样本来说,它表示按照升序排列的数列中,其左侧(即小于Xp%侧)的观察个数在整个样本中所占的百分比为p%,其右侧(即大于Xp%侧)的观察个数在整个样本中所占的百分比为(100-p)%。百分位数计算L为第x百分位数所在组的下限i为第x百分位数所在组的组距fp为第x百分位数所在组的频数 为第x百分位数所在组的前一段的累积频数累积频率刚好大于x%的组即为第x百分位数所在的组 组段组段 (1)频数,频数,f(3)累计频数累计频数S Sf(4)累计百分率累计百分率0.5331.9 0.69127.5 0.7122415.0 0.8133723.1 0.9175433.8 1.0187245.0 1.1209257.5 1.21811068.8 1.31712779.4 1.41314087.5 1.5914993.1 1.6815798.1 1.71.8 合合计计3160100.0 160P250.9+0.1x(160 x25%37)/170.92P751.3+0.1x(160 x75%110)/171.36四分位数间距(inter-quartile range)将特殊的3个分位数X25%,X50%,X75%统称为四分位数,并且分别称为第一四分位数,第二四分位数和第三四分位数,记为Q1,Q2和Q3.Q3与Q1的差值为四分位间距。QQ3 Q1=X75%-X25%四四分分位位数数间间距距常常用用于于描描述述偏偏态态分分布布资资料料,两两端端无无确确切切值或分布不明确资料的离散程度值或分布不明确资料的离散程度四四分分位位数数间间距距较较全全距距稳稳定定,常常与与中中位位数数一一起起,描描述述偏偏态分布资料的特征。态分布资料的特征。计计量量单单位位与与原原变变量量的的计计量量单单位位相相同同,且且它它对对离离群群值值的的敏感远远低于全距,受样本量的影响较小。敏感远远低于全距,受样本量的影响较小。缺点是仅使用了原变量的部分信息。缺点是仅使用了原变量的部分信息。三、离均差平方和平均偏差:为了利用每一个观察值的信息,一个自然的设想是计算各观察值偏离平均数的平均差距,为了避免正负抵消,可将每个观察值与均数之差的绝对值相加,然后取平均,称作平均偏差。离均差平方和(sum of square,ss)四、方差(mean of square,MS)总体方差样本方差S2样本均数代替总体均数,导致离均差缩小;英国统计学家Gosset W-S 提出自由度,以n-1代替n。n-1又称作自由度(degrees of freedom),指随机变量可以“自由”变动的个数。n-限制条件的数目五、标准差(standard of deviation,SD)总体标准差样本标准差S 组段组段 (1)频数,频数,f(3)组中值,组中值,X(4)fX(5)=(3)(4)fX2(5)=(3)(4)20.530.551.650.91 0.690.655.853.80 0.7120.759.006.75 0.8130.8511.059.39 0.9170.9516.1515.34 1.0181.0518.9019.85 1.1201.1523.0026.45 1.2181.2522.5028.13 1.3171.3522.9530.98 1.4131.4518.8527.33 1.591.5513.9521.62 1.681.6513.2021.78 1.71.8 合合计计31.755.259.19 160182.30221.52 方差(221.52182.302/160)/(160-1)0.0869标准差0.29标准差的基本内容是“离均差”,它显示一组变量值与其均数的间距,故标准差直接地、总结地、平均地描述了变量值的离散程度。R SS MS S甲组甲组 8 40 10.0 3.16乙组乙组 12 90 22.5 4.74丙组丙组 8 34 8.5 2.92六、变异系数(coefficient of variation)亦称离散系数,是标准差s与均数之比,即:适用范围观察指标单位不同,如身高、体重 不同单位资料均数相差悬殊例:某地20岁男子100人,身高均数为166.06cm,标准差为4.95cm;体重均数为53.7kg,标准差为4.96kg,试比较身高和体重的变异。身高体重 没有单位反映标准差占均数的百分比或标准差是均数的几倍可用来比较度量衡单位不同的资料的变异度 不受平均水平的影响反映的是以均数为基数的相对变异的大小比较均数相差悬殊的资料的变异度 变异系数的特点及相应的用途绝对变异受平均水平的影响相对变异排除了平均水平的影响平均数与变异度的关系平均数表示的集中性与变异度表示的离散性,是从两个不同的角度阐明计量资料的特征 变异度越小,平均数对各变量值的代表性越好 变异度越大,平均数对各变量值的代表性越差通常,平均数与变异指标一起描述资料的分布特征。用均数和标准差描述正态分布资料的特征;用中位数和四分位数间距描述偏态分布资料的特征。变异指标小结变异指标小结1极差较粗,适合于任何分布2标准差与均数的单位相同,最常用,适合于近似正态分布3变异系数主要用于单位不同或均数相差悬殊资料4平均指标和变异指标分别反映资料的不同特征,常配套使用如 正态分布:均数、标准差;偏态分布:中位数、四分位间距1.变异系数主要用于A比较不同计量指标的变异程度 B.衡量正态分布的变异程度C.衡量测量的准确度D.衡量偏态分布的变异程度E.衡量样本抽样误差的大小2.对于近似正态分布的资料,描述其变异程度应选用的指标是A.变异系数 B.离均差平方和 C.极差 D.四分位数间距 E.标准差3已知动脉硬化患者载脂蛋白B的含量(mg/dl)呈明显偏态分布,描述其个体差异的统计指标应使用A全距 B.标准差 C.变异系数 D方差 E.四分位数间距第五章第四节 正态分布一、正态分布的概念和特征二、正态分布的应用一、正态分布概念和特征一种连续型随机变量常见而重要的分布 首先由德国数学家德.莫阿弗尔于1733年提出 德国数学家高斯在研究测量误差时也建立了正态分布,并对正态分布的性质作了进一步的研究,因此正态分布也叫高斯分布。正态分布的图形某地用随机抽样方法检查了140名成年男子的红细胞数,当取组距为0.05时,图2.1 140名正常男子红细胞计数的直方图 如果将观察人数逐渐增多,组距也不断缩小,图中直条将逐渐变窄,整个图形将逐渐接近于一条光滑的曲线,即接近于近似正态分布曲线。连续型随机变量及其概率分布随机变量X取各种值的概率的规律称为概率分布规律,简称分布,是研究随机事物的工具和统计分析的理论基础在某一区间内随机变量取值的概率可通过计算积分获得,被积函数则称为连续型随机变量的密度函数如果X为连续型随机变量,其密度函数为f(x),则其分布函数为如果连续型随机变量X在实数范围内取值,且具有如下的概率密度函数和概率分布函数X Xf f(X X)m m正态分布的特性正态分布曲线为位于X轴上方的钟型曲线,且以X=为对称轴左右对称。以X轴为渐近线,两端与X轴永不相交正态分布曲线在X=处有最大值,其值为 f()=1/,X远离,f(X)值越小;正态曲线在X+处有拐点;正态分布有两个参数,即均数和标准差,不同的、不同的对应于不同的正态分布曲线恒定时,恒定时,增大,曲线沿横轴向右移动;增大,曲线沿横轴向右移动;减小,减小,曲线沿横轴向左移动曲线沿横轴向左移动恒定时,恒定时,越大,曲线越宽,表示数据越分散;越大,曲线越宽,表示数据越分散;越小,曲线越窄,表示数据越集中越小,曲线越窄,表示数据越集中标准正态分布标准正态分布 N(0,1)标准正态分布指数据经标准化后,标准正态分布指数据经标准化后,=0,=1时时的正态分布的正态分布 公式公式 或或任何一个正态分布,都可以通过变换,成为标准任何一个正态分布,都可以通过变换,成为标准正态分布正态分布只要确定服从标准正态分布的随机变量取值及其只要确定服从标准正态分布的随机变量取值及其概率,就可利用这一关系计算一般正态分布的取概率,就可利用这一关系计算一般正态分布的取值概率值概率正态曲线下面积的分布规律(1)服从标准正态分布的随机变量在一区间上曲线下的面积与该随机变量在同一区间的取值的概率相等例例 140140名成年男子红细胞均数和标准差分别名成年男子红细胞均数和标准差分别为为 4.784.7810101212/L/L和和 0.370.3710101212/L L,求红细,求红细胞数在胞数在4 4 10101212/L5.3/L5.3 10101212/L/L范围内所范围内所占的比例。占的比例。(2)X轴与正态曲线下所夹的面积恒等于1。(3)如果uN(0,1),根据标准正态分布的分布函数为简化计算制成了附表2,欲求服从标准正态分布的随机变量在区间(-,u)(u0)上曲线下的面积,可直接查表;对于u0,可根据对称性:(u)=1-(-u)u在区间(u1,u2)取值概率的计算公式:P(u1uu2)=(u2)-(u1)例 已知z1=-1.76,z2=-0.25,求标准正态曲线下(-1.76,-0.25)范围内的面积例 已知z1=-1.20,z2=1.6,求标准正态曲线下(-1.20,1.6)范围内的面积(4)正态曲线下面积的分布规律(5)如果XN(,2),X在区间(X1,X2)上取值的概率为 例例 140140名成年男子红细胞均数和标准差分名成年男子红细胞均数和标准差分别为别为 4.784.7810101212/L/L和和 0.370.3710101212/L L,求红,求红细胞数在细胞数在4 4 10101212/L5.3/L5.3 10101212/L/L范围内范围内所占的比例。所占的比例。u1=(4-4.78)/0.37=-2.11 u2=(5.3-4.78)/0.37=1.41P1=0.0174 P2=0.9207 P=0.9207-0.0174=0.9033 mmol/L,mmol/L,试估计该地正常女子血清甘油三脂在1.10 mmol/L以下者占正常女子血清甘油三脂总人数的百分比。查附表得:0.4483=44.83%正态分布的应用制定医学参考值范围质量控制正态分布是许多统计方法的理论基础医学参考值范围“正常”人的解剖、生理、生化指标及组织代谢产物含量等数据正常与否的参考值。由于个体差异的存在,人群中的医学参考值有一定波动范围,医学参考值范围是指按一定的概率所确定的医学参考值的波动范围。目的基于临床实践,着眼于个体基于预防医学实践,着眼于人群医学参考值范围的制定方法确定观察对象和抽取足够的观察单位明确研究总体”正常人”总体,指排除了影响所研究变量的疾病和有关因素的同质人群。例如,某市欲制定学龄前儿童血铅的参考值范围,观察对象定为:年龄在3-6岁,在本市居住一年以上;无肝肾等器质性疾病;无铅接触史;无特殊的饮食习惯,测定前三天未进食含铅高的食物随机抽样样本量的确定测定方法应统一、准确应采用得到公认的或权威机构推荐的标准方法,以利于结果的评价和比较操作人员必须经过统一的培训测定时使用灵敏度较高的分析仪器,新仪器、新方法要校正和验证决定是否分组制定参考值范围当观察值在性别、年龄、地区、民族、职业组间的分布差别较明显,而差具有实际意义时,应分组制定参考值范围方法:频数分布表法,比较各组的分布范围、趋势、高峰位置假设检验法决定取单侧范围还是双侧范围单侧下限单侧下限异常异常正常正常 单侧下限单侧下限-过低异常过低异常单侧上限单侧上限异常异常正常正常单侧上限单侧上限-过高异常过高异常异常异常正常正常双侧下限双侧下限双侧上限双侧上限异常异常双侧双侧-过高、过低均异常过高、过低均异常选择适当的百分范围(80%、90%、95%、99%)正常人病人假阳性率假阴性率估计参考值范围的界限百分位数法正态分布法表2 参考值范围所对应的百分位数百分范围(%)单侧双侧(对称)下限上限下限上限95P5P95P2.5P97.599P1P99P0.5P99.5表3-3 参考值范围所对应的正态分布区间百分范围(%)单侧双侧(对称)下限上限下限上限9599例4-22 某地调查正常成年男子200人的红细胞数,均数为55.26*1012/L,标准差为0.38*1012/L,试估计该地成年男子的红细胞数的95%的参考值范围例4.24 抽样测定某城市125名55-60岁组健康男性居民的血清低密度脂蛋白含量(mmol/L),如表4.26所示,试制定该市55-60岁组健康男性居民的血清LDL-C的95%的参考值范围表4.6 某市125名5560岁健康居民男性LDL-C的频数分布组短组短频数频数累计频数累计频数累计频率(累计频率(%)1.3554.01.6275.61.94118.82.251612.82.542016.02.8113124.83.1144536.03.4156048.03.7197963.24.02710684.84.31712398.44.62125100.0P2.5=1.3+0.3/5(125*2.5%-0)=1.49(mmol/L)P97.5=4.3+0.3/17(125*97.5%-106)=4.58(mmol/L)该市125名5560岁健康居民男性LDL-C的95%的参考值范围为1.494.5 mmol/L 8质量控制一般情况下,实验中的检测误差服从正态分布,故可用正态分布理论来评价和控制食盐的质量实验观测值得上下警戒线:实验观测值得上下控制线:正态分布是许多统计学方法的理论基础很多统计学方法都是建立在正态分布的基础之非正态分布资料,对于经对数转化后成为正态分布或近似正态分布,先做变量转换,然后按正态分布的方法尽行处理练习:假定一组男孩的体重呈正态分布,平均体重练习:假定一组男孩的体重呈正态分布,平均体重均数40kg、体重的标准差、体重的标准差4kg,请回答以下,请回答以下问题:问题:体重低于体重低于46.6kg的男孩占百分之几?的男孩占百分之几?体重在体重在33.4kg46.6kg之间的男孩占百分之几?之间的男孩占百分之几?体重大于什么值的男孩占体重大于什么值的男孩占10%?查表,得查表,得10.04950.05 20.95 0.950.050.90 即体重在即体重在33.4kg46.6kg之间的男孩占之间的男孩占90%以以10%0.10先查表,得先查表,得u11.28 u2 u1 u21.28XXuSX401.28445.12(kg)即体重大于即体重大于45.12kg的男孩占的男孩占10%练习:某年某地不同年龄组男童身高资料如下练习:某年某地不同年龄组男童身高资料如下:年龄组年龄组 人数人数 均数(均数(cm)标准差标准差cm)12月月 100 56.3 2.156月月 120 66.5 2.233.5岁岁 300 96.1 3.155.5岁岁 400 107.8 3.3 (1)上述资料是否表明)上述资料是否表明6岁以下男童的平均身高和身高的变异程岁以下男童的平均身高和身高的变异程度均随年龄增长而增加?度均随年龄增长而增加?(2)若身高服从正态分布,试估计上述)若身高服从正态分布,试估计上述300名名33.5岁男童中身高在岁男童中身高在95.0100cm范围内者有多少人?范围内者有多少人?