欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    复变函数课件--复变函数5 泰勒级数.ppt

    • 资源ID:70749991       资源大小:534KB        全文页数:32页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    复变函数课件--复变函数5 泰勒级数.ppt

    3 泰勒级数 设函数 f(z)在区域D内解析,而|z-z0|=r为D内以z0为中心的任何一个圆周,它与它的内部全含于D,把它记作K,又设z为K内任一点.z0Kzrz按柯西积分公式,有且z0Kzrz由解析函数高阶导数公式,上式可写成在K内成立,即 f(z)可在K内用幂级数表达.q与积分变量z无关,且0q1.z0Kzrz K含于D,f(z)在D内解析,在K上连续,在K上有界,因此在K上存在正实数 M 使|f(z)|M.因此,下面的公式在K内成立:称为f(z)在z0的泰勒展开式,它右端的级数称为 f(z)在z0处的泰勒级数.圆周K的半径可以任意增大,只要K在D内.所以,如果z0到D的边界上各点的最短距离为d,则 f(z)在z0的泰勒展开式在圆域|z-z0|d 内成立.定理定理(泰勒展开定理)设 f(z)在区域D内解析,z0为D内的一点,d为z0到D的边界上各点的最短距离,则当|z-z0|d 时,注注:如果 f(z)在z0解析,则使 f(z)在z0的泰勒展开式成立的圆域的半径 R等于从z0到 f(z)的距z0最近一个奇点a 的距离,即R=|a-z0|.yz0ax 任何解析函数展开成幂级数的结果就是泰勒级数,因而是唯一唯一的.利用泰勒展开式,我们可以直接通过计算系数:把 f(z)在z0展开成幂级数,这被称作直接展开法例如,求 ez 在 z=0处的泰勒展开式,由于(ez)(n)=ez,(ez)(n)|z=0=1(n=0,1,2,.),故有因为ez在复平面内处处解析,上式在复平面内处处成立,收敛半径为+.同样,可求得sin z与cos z在z=0的泰勒展开式:除直接法外,也可以借助一些已知函数的展开式,利用幂级数的运算性质和分析性质,以唯一性为依据来得出一个函数的泰勒展开式,此方法称为间接展开法.例如sin z在z=0的泰勒展开式也可以用间接展开法得出:解 由于函数有一奇点z=-1,而在|z|1内处处解析,所以 可在|z|1内展开成z的幂级数.因为 例1 把函数 展开成z的幂级数.例2 求对数函数的主值ln(1+z)在z=0处的幂级数展开式.解 ln(1+z)在从-1向左沿负实轴剪开的平面内是解析的,-1是它的奇点,所以可在|z|1展开为z的幂级数.-1OR=1xy推论推论1:注:推论推论2:推论推论3:幂级数的和函数在其收敛圆周上至少有一个奇点.(即使幂级数在其收敛圆周上处处收敛)例如:推论推论4:例如:而如果把函数中的x换成z,在复平面内来看函数1-z2+z4-它有两个奇点i,而这两个奇点都在此函数的展开式的收敛圆周上,所以这个级数的收敛半径只能等于1.因此,即使我们只关心z的实数值,但复平面上的奇点形成了限制.在实变函数中有些不易理解的问题,一到复变函数中就成为显然的事情,例如在实数范围内,展开式的成立必须受|x|R1时,即|z|R,因此,只有在R1|z-z0|R2的圆环域,原级数才收敛.z0R1R2例如级数在收敛圆环域内也具有.例如,可以证明,上述级数在收敛域内其和函数是解析的,而且可以逐项求积和逐项求导.幂级数在收敛圆内的许多性质,级数现在反问,在圆环域内解析的函数是否一定能够展开成幂级数?先看下例.其次,在圆环域:0|z-1|1内也可以展开为z-1的幂级数:1Oxy定理定理 设 f(z)在圆环域 R1|z-z0|R2内解析,则C为在圆环域内绕z0的任何一条正向简单闭曲线.证 设z为圆环域内的任一点,在圆环域内作以z0为中心的正向圆周K1与K2,K2的半径R大于K1的半径r,且使z在K1与K2之间.R1R2zrK1zRK2zz0由柯西积分公式得R1R2zrK1zRK2zz0因此有如果在圆环域内取绕z0的任何一条正向简单闭曲线C,则根据闭路变形原理,这两个式子可用一个式子来表示:Cz0R1R2称为函数f(z)在以z0为中心的圆环域:R1|z-z0|R2内的洛朗(Laurent)展开式,它右端的级数称为 f(z)在此圆环域内的洛朗级数.一个在某圆环域内解析的函数展开为含有正,负幂项的级数是唯一的,这个级数就是 f(z)的洛朗级数.根据由正负整次幂项组成的级数的唯一性,一般可以用代数运算,代换,求导和积分等方法去展开,以求得洛朗级数的展开式.解:函数 f(z)在圆环域 i)0|z|1;ii)1|z|2;iii)2|z|+内是处处解析的,应把 f(z)在 这些区域内展开成洛朗级数.xyO1xyO12xyO2先把 f(z)用部分分式表示:ii)在1|z|2内:iii)在2|z|+内:例2 把函数解 因有函数可以在以z0为中心的(由奇点隔开的)不同圆环域内解析,因而在各个不同的圆环域中有不同的洛朗展开式(包括泰勒展开式作为它的特例).我们不要把这种情形与洛朗展开式的唯一性相混淆.所谓洛朗展开式的唯一性,是指函数在某一个给定的圆环域内的洛朗展开式是唯一的.例如在 z=i 和z=-i处展开函数 为洛朗级数。在复平面内有两个奇点:z=0与z=-i,分别在以i为中心的圆周:|z-i|=1与|z-i|=2上.因此,f(z)在以i为中心的圆环域(包括圆域)内的展开式有三个:1)在|z-i|1中的泰勒展开式;2)在1|z-i|2中的洛朗展开式;3)在2|z-i|+中的洛朗展开式;在复平面内有一个奇点:z=0在以-i为中心的圆周:|z+i|=1上.因此,f(z)在以-i为中心的圆环域内的展开式有二个:1)在0|z+i|1中的洛朗展开式;2)在1|z+i|+中的洛朗展开式。O-ii特别的,当洛朗级数的系数公式(即可利用Laurent系数计算积分)其中C为圆环域R1|z-z0|R2内的任何一条简单闭曲线,f(z)在此圆环域内解析.例解:例4 解:故c-1=-2,

    注意事项

    本文(复变函数课件--复变函数5 泰勒级数.ppt)为本站会员(hyn****60)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开