第八章多元函数微分学PPT讲稿.ppt
第八章多元函数微分学第1页,共33页,编辑于2022年,星期三 第八章 第一节第一节一、区域一、区域二、多元函数的概念二、多元函数的概念三、多元函数的极限三、多元函数的极限四、多元函数的连续性四、多元函数的连续性机动 目录 上页 下页 返回 结束 多元函数的基本概念多元函数的基本概念 第2页,共33页,编辑于2022年,星期三一、一、区域区域1.邻域邻域点集称为点 P0 的 邻域邻域.例如例如,在平面上,(圆邻域)在空间中,(球邻域)说明:说明:若不需要强调邻域半径,也可写成点 P0 的去心邻域去心邻域记为机动 目录 上页 下页 返回 结束 第3页,共33页,编辑于2022年,星期三在讨论实际问题中也常使用方邻域,平面上的方邻域为。因为方邻域与圆邻域可以互相包含.机动 目录 上页 下页 返回 结束 第4页,共33页,编辑于2022年,星期三2.区域区域(1)内点、外点、边界点设有点集 E 及一点 P:若存在点 P 的某邻域 U(P)E,若存在点 P 的某邻域 U(P)E=,若对点 P 的任一任一邻域 U(P)既含 E中的内点也含 E则称 P 为 E 的内点内点;则称 P 为 E 的外点外点;则称 P 为 E 的边界点边界点 .机动 目录 上页 下页 返回 结束 的外点,显然,E 的内点必属于 E,E 的外点必不属于 E,E 的边界点可能属于 E,也可能不属于 E.第5页,共33页,编辑于2022年,星期三(2)聚点聚点若对任意给定的,点P 的去心机动 目录 上页 下页 返回 结束 邻域内总有E 中的点,则称 P 是 E 的聚点聚点.聚点可以属于 E,也可以不属于 E(因为聚点可以为 所有聚点所成的点集成为 E 的导集导集.E 的边界点)第6页,共33页,编辑于2022年,星期三D(3)开区域及闭区域 若点集 E 的点都是内点,则称 E 为开集;若点集 E E,则称 E 为闭集;若集 D 中任意两点都可用一完全属于 D 的折线相连,开区域连同它的边界一起称为闭区域.则称 D 是连通的;连通的开集称为开区域,简称区域;机动 目录 上页 下页 返回 结束。E 的边界点的全体称为 E 的边界,记作E;第7页,共33页,编辑于2022年,星期三例如,例如,在平面上开区域闭区域机动 目录 上页 下页 返回 结束 第8页,共33页,编辑于2022年,星期三 整个平面 点集 是开集,是最大的开域,也是最大的闭域;但非区域.机动 目录 上页 下页 返回 结束 o 对区域 D,若存在正数 K,使一切点 PD 与某定点 A 的距离 AP K,则称 D 为有界域有界域,界域界域.否则称为无无第9页,共33页,编辑于2022年,星期三3.n 维空间维空间n 元有序数组的全体称为 n 维空间维空间,n 维空间中的每一个元素称为空间中的称为该点的第 k 个坐标坐标.记作即机动 目录 上页 下页 返回 结束 一个点点,当所有坐标称该元素为 中的零元,记作 O.第10页,共33页,编辑于2022年,星期三的距离距离记作中点 a 的 邻域邻域为机动 目录 上页 下页 返回 结束 规定为 与零元 O 的距离为第11页,共33页,编辑于2022年,星期三二、多元函数的概念二、多元函数的概念 引例引例:圆柱体的体积 定量理想气体的压强 三角形面积的海伦公式机动 目录 上页 下页 返回 结束 第12页,共33页,编辑于2022年,星期三定义定义1.设非空点集点集 D 称为函数的定义域定义域;数集称为函数的值域值域 .特别地,当 n=2 时,有二元函数当 n=3 时,有三元函数映射称为定义在 D 上的 n 元函数元函数,记作机动 目录 上页 下页 返回 结束 第13页,共33页,编辑于2022年,星期三例如,二元函数定义域为圆域说明说明:二元函数 z=f(x,y),(x,y)D图形为中心在原点的上半球面.机动 目录 上页 下页 返回 结束 的图形一般为空间曲面 .三元函数 定义域为图形为空间中的超曲面.单位闭球第14页,共33页,编辑于2022年,星期三三、多元函数的极限三、多元函数的极限定义定义2.设 n 元函数点,则称 A 为函数(也称为 n 重极限)当 n=2 时,记二元函数的极限可写作:P0 是 D 的聚若存在常数 A,对一记作都有机动 目录 上页 下页 返回 结束 对任意正数 ,总存在正数,切第15页,共33页,编辑于2022年,星期三例例1.设求证:证证:故总有机动 目录 上页 下页 返回 结束 要证 第16页,共33页,编辑于2022年,星期三例例2.设求证:证:证:故总有要证机动 目录 上页 下页 返回 结束 第17页,共33页,编辑于2022年,星期三 若当点趋于不同值或有的极限不存在,解解:设 P(x,y)沿直线 y=k x 趋于点(0,0),在点(0,0)的极限.则可以断定函数极限则有k 值不同极限不同值不同极限不同!在(0,0)点极限不存在.以不同方式趋于不存在.例例3.讨论函数函数机动 目录 上页 下页 返回 结束 第18页,共33页,编辑于2022年,星期三例例4.求解解:因而此函数定义域不包括 x,y 轴则故机动 目录 上页 下页 返回 结束 第19页,共33页,编辑于2022年,星期三仅知其中一个存在,推不出其它二者存在.二重极限不同不同.如果它们都存在,则三者相等.例如例如,显然与累次极限但由例3 知它在(0,0)点二重极限不存在.例3 目录 上页 下页 返回 结束 第20页,共33页,编辑于2022年,星期三四四、多元函数的连续性多元函数的连续性 定义定义3.设 n 元函数定义在 D 上,如果函数在 D 上各点处都连续,则称此函数在 D 上如果存在否则称为不连续,此时称为间断点.则称 n 元函数机动 目录 上页 下页 返回 结束 连续.连续,第21页,共33页,编辑于2022年,星期三例如例如,函数在点(0,0)极限不存在,又如又如,函数上间断.故(0,0)为其间断点.在圆周机动 目录 上页 下页 返回 结束 结论结论:一切多元初等函数在定义区域内连续.第22页,共33页,编辑于2022年,星期三定理定理:若 f(P)在有界闭域 D 上连续,则机动 目录 上页 下页 返回 结束*(4)f(P)必在D 上一致连续.在 D 上可取得最大值 M 及最小值 m;(3)对任意(有界性定理)(最值定理)(介值定理)(一致连续性定理)闭域上多元连续函数有与一元函数类似的如下性质:(证明略)第23页,共33页,编辑于2022年,星期三解解:原式例例5.求例例6.求函数的连续域.解解:机动 目录 上页 下页 返回 结束 第24页,共33页,编辑于2022年,星期三内容小结内容小结1.区域 邻域:区域连通的开集 2.多元函数概念n 元函数常用二元函数(图形一般为空间曲面)三元函数机动 目录 上页 下页 返回 结束 第25页,共33页,编辑于2022年,星期三有3.多元函数的极限4.多元函数的连续性1)函数2)闭域上的多元连续函数的性质:有界定理;最值定理;介值定理3)一切多元初等函数在定义区域内连续P11 题 2;4;5(3),(5)(画图);8P72 题 3;4机动 目录 上页 下页 返回 结束 思考与练习思考与练习第26页,共33页,编辑于2022年,星期三解答提示解答提示:P11 题 2.称为二次齐次函数.P11 题 4.P11 题 5(3).定义域P11 题 5(5).定义域机动 目录 上页 下页 返回 结束 第27页,共33页,编辑于2022年,星期三P12 题 8.间断点集P72 题 3.定义域P72 题 4.令 y=k x,若令机动 目录 上页 下页 返回 结束,则 可见极限不存在第28页,共33页,编辑于2022年,星期三 作业作业P11 5(2),(4),(6)6 (2),(3),(5),(6)7,9,10第二节 目录 上页 下页 返回 结束 第29页,共33页,编辑于2022年,星期三备用题备用题1.设求解法解法1 令机动 目录 上页 下页 返回 结束 第30页,共33页,编辑于2022年,星期三1.设求解法解法2 令即机动 目录 上页 下页 返回 结束 第31页,共33页,编辑于2022年,星期三2.是否存在?解解:所以极限不存在.机动 目录 上页 下页 返回 结束 第32页,共33页,编辑于2022年,星期三 3.证明在全平面连续.证证:为初等函数,故连续.又故函数在全平面连续.由夹逼准则得机动 目录 上页 下页 返回 结束 第33页,共33页,编辑于2022年,星期三