欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    matlab符号运算案例.ppt

    • 资源ID:70797132       资源大小:841.50KB        全文页数:65页
    • 资源格式: PPT        下载积分:11.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要11.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    matlab符号运算案例.ppt

    数学建模讲座(数学建模讲座(2004年年7月月8月月 江西)江西)优化模型与优化模型与LINDO/LINGO优化软件优化软件谢金星谢金星清华大学数学科学系清华大学数学科学系Tel:010-62787812http:/ 优化模型简介优化模型简介LINDO公司的主要软件产品及功能简介公司的主要软件产品及功能简介LINDO软件的使用简介软件的使用简介LINGO软件的使用简介软件的使用简介 建模与求解实例(结合软件使用)建模与求解实例(结合软件使用)优化模型优化模型 实际问题中实际问题中的优化模型的优化模型x决策变量决策变量f(x)目标函数目标函数gi(x)0约束条约束条件件数学规划数学规划线性规划线性规划(LP)二次规划二次规划(QP)非线性规划非线性规划(NLP)纯整数规划纯整数规划(PIP)混合整数规划混合整数规划(MIP)整数规划整数规划(IP)0-1整数规划整数规划一般整数规划一般整数规划连续规划连续规划LINDO LINDO 公司软件产品简要介绍公司软件产品简要介绍美国芝加哥美国芝加哥(Chicago)大学的大学的LinusSchrage教授于教授于1980年前后开发年前后开发,后来成立后来成立LINDO系统公司(系统公司(LINDOSystemsInc.),),网址:网址:http:/LINDO:LinearINteractiveandDiscreteOptimizer(V6.1)LINGO:LinearINteractiveGeneralOptimizer(V8.0)LINDOAPI:LINDOApplicationProgrammingInterface(V2.0)WhatsBest!:(SpreadSheete.g.EXCEL)(V7.0)演演示示(试用试用)版、学生版、高级版、超级版、工业版、版、学生版、高级版、超级版、工业版、扩展版扩展版(求解(求解问题规模问题规模和和选件选件不同)不同)LINDOLINDO和和LINGOLINGO软件能求解的优化模型软件能求解的优化模型LINGOLINDO优化模型优化模型线性规划线性规划(LP)非线性规划非线性规划(NLP)二次规划二次规划(QP)连续优化连续优化整数规划整数规划(IP)LPQPNLPIP全局优化全局优化(选选)ILPIQPINLPLINDO/LINGO软件的求解过程 LINDO/LINGO预处理程序预处理程序线性优化求解程序线性优化求解程序非线性优化求解程序非线性优化求解程序分枝定界管理程序分枝定界管理程序1.确定常数确定常数2.识别类型识别类型1.单纯形算法单纯形算法2.内点算法内点算法(选选)1、顺序线性规划法、顺序线性规划法(SLP)2、广义既约梯度法、广义既约梯度法(GRG)(选选)3、多点搜索、多点搜索(Multistart)(选选)建模时需要注意的几个基本问题建模时需要注意的几个基本问题1、尽量使用实数优化,减少整数约束和整数变量尽量使用实数优化,减少整数约束和整数变量2、尽量使用光滑优化,减少非光滑约束的个数尽量使用光滑优化,减少非光滑约束的个数如:尽量少使用绝对值、符号函数、多个变量求最如:尽量少使用绝对值、符号函数、多个变量求最大大/最小值、四舍五入、取整函数等最小值、四舍五入、取整函数等3、尽量使用线性模型,减少非线性约束和非线性变量尽量使用线性模型,减少非线性约束和非线性变量的个数的个数(如(如x/y5改为改为x5y)4、合理设定变量上下界,尽可能给出变量初始值合理设定变量上下界,尽可能给出变量初始值5、模型中使用的参数数量级要适当模型中使用的参数数量级要适当(如小于如小于103)需要掌握的几个重要方面需要掌握的几个重要方面1、LINDO:正确阅读求解报告(尤其要掌握敏感性分析)正确阅读求解报告(尤其要掌握敏感性分析)2、LINGO:掌握集合掌握集合(SETS)的应用;的应用;正确阅读求解报告;正确阅读求解报告;正确理解求解状态窗口;正确理解求解状态窗口;学会设置基本的求解选项学会设置基本的求解选项(OPTIONS);掌握与外部文件的基本接口方法掌握与外部文件的基本接口方法例例1加工奶制品的生产计划加工奶制品的生产计划1桶牛奶 3公斤A1 12小时 8小时 4公斤A2 或获利24元/公斤 获利16元/公斤 50桶牛奶桶牛奶时间时间480小时小时 至多加工至多加工100公斤公斤A1制订生产计划,使每天获利最大制订生产计划,使每天获利最大 35元可买到元可买到1桶牛奶,买吗?若买,每天最多买多少桶牛奶,买吗?若买,每天最多买多少?可聘用临时工人,付出的工资最多是每小时几元可聘用临时工人,付出的工资最多是每小时几元?A1的获利增加到的获利增加到30元元/公斤,应否改变生产计划?公斤,应否改变生产计划?每天:每天:1桶牛奶 3公斤A1 12小时 8小时 4公斤A2 或获利24元/公斤 获利16元/公斤 x1桶牛奶生产桶牛奶生产A1x2桶牛奶生产桶牛奶生产A2获利获利243x1获利获利164 x2原料供应原料供应 劳动时间劳动时间 加工能力加工能力 决策变量决策变量 目标函数目标函数 每天获利每天获利约束条件约束条件非负约束非负约束 线性线性规划规划模型模型(LP)时间时间480小时小时 至多加工至多加工100公斤公斤A150桶牛奶桶牛奶每天每天模型求解模型求解 max72x1+64x2st2)x1+x2503)12x1+8x24804)3x1100endOBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2DORANGE(SENSITIVITY)ANALYSIS?No20桶牛奶生产桶牛奶生产A1,30桶生产桶生产A2,利润,利润3360元。元。模型求解模型求解 reduced cost值值表表示示当当该该非非基基变变量量增增加加一一个个单单位位时时(其其他他非非基基变变量量保保持持不不变变)目目标标函函数数减减少少的的量量(对对max型问题型问题)OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2也可理解为:也可理解为:为为了了使使该该非非基基变变量量变变成成基基变变量量,目目标标函函数数中中对对应应系数应增加的量系数应增加的量OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000原料无剩余原料无剩余时间无剩余时间无剩余加工能力剩余加工能力剩余40max72x1+64x2st2)x1+x2503)12x1+8x24804)3x1100end三三种种资资源源“资源资源”剩余为零的约束为紧约束(有效约束)剩余为零的约束为紧约束(有效约束)结果解释结果解释 OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000结果解释结果解释 最优解下最优解下“资源资源”增增加加1单位时单位时“效益效益”的的增量增量原料增原料增1单位单位,利润增利润增48时间加时间加1单位单位,利润增利润增2能力增减不影响利润能力增减不影响利润影子价格影子价格35元可买到元可买到1桶牛奶,要买吗?桶牛奶,要买吗?35”(或(或“=”(或(或“=”)功能相)功能相同同2.变量与系数间可有空格变量与系数间可有空格(甚至回车甚至回车),但无运算符但无运算符3.变量名以字母开头,不能超过变量名以字母开头,不能超过8个字符个字符4.变量名不区分大小写(包括变量名不区分大小写(包括LINDO中的关键字)中的关键字)5.目标函数所在行是第一行,第二行起为约束条件目标函数所在行是第一行,第二行起为约束条件6.行号行号(行名行名)自动产生或人为定义。行名以自动产生或人为定义。行名以“)”结结束束7.行中注有行中注有“!”符号的后面部分为注释。如符号的后面部分为注释。如:8.!ItsComment.8.在模型的任何地方都可以用在模型的任何地方都可以用“TITLE”对模型命名对模型命名(最多(最多72个字符),如:个字符),如:TITLEThisModelisonlyanExample9.变量不能出现在一个约束条件的右端变量不能出现在一个约束条件的右端10.表达式中不接受括号表达式中不接受括号“()”和逗号和逗号“,”等任何符等任何符号号,例例:400(X1+X2)需写为需写为400X1+400X211.表达式应化简,如表达式应化简,如2X1+3X2-4X1应写成应写成-2X1+3X212.缺省假定所有变量非负;可在模型的缺省假定所有变量非负;可在模型的“END”语句语句后用后用“FREEname”将变量将变量name的非负假定取消的非负假定取消13.可在可在“END”后用后用“SUB”或或“SLB”设定变量上设定变量上下界下界14.例如:例如:“subx110”的作用等价于的作用等价于“x1=10”但用但用“SUB”和和“SLB”表示的上下界约束不计入模表示的上下界约束不计入模型的约束,也不能给出其松紧判断和敏感性分析。型的约束,也不能给出其松紧判断和敏感性分析。14.“END”后对后对0-1变量说明:变量说明:INTn或或INTname15.“END”后对整数变量说明:后对整数变量说明:GINn或或GINname使用使用LINDOLINDO的一些注意事项的一些注意事项二次规划规划(QP)问题LINDO可求解二次规划可求解二次规划(QP)问题,但输入方式较问题,但输入方式较复杂,因为在复杂,因为在LINDO中不许出现非线性表达式中不许出现非线性表达式需要为每一个实际约束增加一个对偶变量需要为每一个实际约束增加一个对偶变量(LAGRANGE乘子),在实际约束前增加有关乘子),在实际约束前增加有关变量的一阶最优条件,转化为互补问题变量的一阶最优条件,转化为互补问题“END”后面使用后面使用QCP命令指明实际约束开始的行命令指明实际约束开始的行号,然后才能求解号,然后才能求解建议总是用建议总是用LINGO解解QP注意注意对对QP和和IP:敏感性分析意义不大敏感性分析意义不大状态窗口状态窗口(LINDO Solver Status)当前状态:已达最优解当前状态:已达最优解迭代次数:迭代次数:18次次约束不满足的约束不满足的“量量”(不不是是“约束个数约束个数”):0当前的目标值:当前的目标值:94最好的整数解:最好的整数解:94整数规划的界:整数规划的界:93.5分枝数:分枝数:1所用时间:所用时间:0.00秒(太快秒(太快了,还不到了,还不到0.005秒)秒)刷新本界面的间隔刷新本界面的间隔:1(秒秒)选项设置选项设置Preprocess:预处理:预处理(生成割平面生成割平面);PreferredBranch:优先的分枝方式:优先的分枝方式:“Default”(缺省方式)、(缺省方式)、“Up”(向上取整优先)、(向上取整优先)、“Down”(向下取整优先);(向下取整优先);IPOptimalityTol:IP最优值允许的误最优值允许的误差上限(一个百分数,如差上限(一个百分数,如5%即即0.05););IPObjectiveHurdle:IP目标函数的篱目标函数的篱笆值,即只寻找比这个值更优最优解笆值,即只寻找比这个值更优最优解(如当知道当前模型的某个整数可行解(如当知道当前模型的某个整数可行解时,就可以设置这个值);时,就可以设置这个值);IPVarFixingTol:固定一个整数变量:固定一个整数变量取值所依据的一个上限(如果一个整数取值所依据的一个上限(如果一个整数变量的判别数(变量的判别数(REDUCEDCOST)的)的值很大,超过该上限,则以后求解中把值很大,超过该上限,则以后求解中把该整数变量固定下来)。该整数变量固定下来)。NonzeroLimit:非零系数的个数上限;非零系数的个数上限;IterationLimit:最大迭代步数;最大迭代步数;InitialContraintTol:约束的初始误差上限;约束的初始误差上限;FinalContraintTol:约束的最后误差上限;约束的最后误差上限;EnteringVarTol:进基变量的进基变量的REDUCEDCOST的误差限;的误差限;PivotSizeTol:旋转元的误差限旋转元的误差限Report/Statistics第一行:模型有第一行:模型有5行(约束行(约束4行),行),4个变量,两个整数变量(没有个变量,两个整数变量(没有0-1变量),从第变量),从第4行开始是二次规划的实际约束。行开始是二次规划的实际约束。第二行:非零系数第二行:非零系数19个,约束中非零系数个,约束中非零系数12个个(其中其中6个为个为1或或-1),模型密度为模型密度为0.760(密度密度=非零系数非零系数/行数行数(变量数变量数)。第三行的意思:按绝对值看,系数最小、最大分别为第三行的意思:按绝对值看,系数最小、最大分别为0.3和和277。第四行的意思:模型目标为极小化;小于等于、等于、大于等于约第四行的意思:模型目标为极小化;小于等于、等于、大于等于约束分别有、个;广义上界约束(束分别有、个;广义上界约束(GUBS)不超过个;)不超过个;变量上界约束(变量上界约束(VUBS)不少于个。所谓)不少于个。所谓GUBS,是指一组不,是指一组不含有相同变量的约束;所谓含有相同变量的约束;所谓VUBS,是指一个蕴涵变量上界的约,是指一个蕴涵变量上界的约束,如从约束束,如从约束X1+X2-X3=0可以看出,若可以看出,若X3=0,则,则X1=0,X2=0(因为有非负限制),因此(因为有非负限制),因此X1+X2-X3=0是一个是一个VUBS约束。约束。第五行的意思:只含个变量的约束个数第五行的意思:只含个变量的约束个数=个;冗余的列数个;冗余的列数=个个ROWS=5 VARS=4 INTEGER VARS=2(0=0/1)QCP=4NONZEROS=19 CONSTRAINT NONZ=12(6=+-1)DENSITY=0.760SMALLEST AND LARGEST ELEMENTS IN ABSOLUTE VALUE=0.300000 277.000OBJ=MIN,NO.:2 0 2,GUBS=0SINGLE COLS=0 REDUNDANT COLS=0LINDOLINDO行命令、命令脚本文件行命令、命令脚本文件批处理:可以采用命令脚本(行命令序列)批处理:可以采用命令脚本(行命令序列)WINDOWS环境下行命令的意义不大环境下行命令的意义不大Example演示演示用用FILE/TAKECOMMANDS(F11)命令调入命令调入必须是以必须是以LINDOPACKED形式形式(压缩)保存的文件(压缩)保存的文件FILE/SAVE命令命令SAVE行命令行命令LINGO软件简介软件简介目标与约束段目标与约束段集合段(集合段(SETSENDSETS)数据段(数据段(DATAENDDATA)初始段(初始段(INITENDINIT)LINGO模型的构成:模型的构成:4个段个段LINGO模型的优点模型的优点包含了包含了LINDO的全部功能的全部功能提供了灵活的编程语言(矩阵生成器)提供了灵活的编程语言(矩阵生成器)LINGOLINGO模型模型 例:选址问题例:选址问题某公司有某公司有6个建筑工地,位置坐标为个建筑工地,位置坐标为(ai,bi)(单位:公单位:公里里),水泥日用量水泥日用量di(单位:吨)单位:吨)假设:假设:料场料场和工地之间和工地之间有直线道路有直线道路用例中数据计算,最优解为总吨公里数为总吨公里数为总吨公里数为总吨公里数为136.2136.2线性规划模型线性规划模型决策变量:决策变量:ci j(料场料场j到到工地工地i的运量)的运量)12维维选址问题:选址问题:NLPNLP2)改建两个新料场,需要确定新料场位置)改建两个新料场,需要确定新料场位置(xj,yj)和运量和运量cij,在其它条件不变下使总吨公里数最小。,在其它条件不变下使总吨公里数最小。决策变量:决策变量:ci j,(xj,yj)16维维非线性规划模型非线性规划模型LINGO模型的构成:模型的构成:4个段个段集合段(集合段(SETSENDSETS)数据段(数据段(DATAENDDATA)初始段(初始段(INITENDINIT)目标与目标与约束段约束段局部最优:局部最优:89.8835(吨公里吨公里)LP:移到数据段:移到数据段边界集合的类型集合的类型集合集合派生集合派生集合基本集合基本集合稀疏集合稀疏集合稠密集合稠密集合元素列表法元素列表法元素过滤法元素过滤法直接列举法直接列举法隐式列举法隐式列举法setname/member_list/:attribute_list;setname(parent_set_list)/member_list/:attribute_list;SETS:CITIES/A1,A2,A3,B1,B2/;ROADS(CITIES,CITIES)/A1,B1 A1,B2 A2,B1 A3,B2/:D;ENDSETSSETS:STUDENTS/S1.S8/;PAIRS(STUDENTS,STUDENTS)|&2#GT#&1:BENEFIT,MATCH;ENDSETS集合元素的集合元素的隐式列举隐式列举类类型型隐隐式列式列举举格式格式示例示例示例集合的元素示例集合的元素数字型数字型 1.n1.51,2,3,4,5字符字符-数字型数字型stringM.stringNCar101.car208 Car101,car102,car208星期型星期型 dayM.dayNMON.FRIMON,TUE,WED,THU,FRI月份型月份型 monthM.monthN OCT.JANOCT,NOV,DEC,JAN年份年份-月份型月份型monthYearM.monthYearNOCT2001.JAN2002OCT2001,NOV2001,DEC2001,JAN2002运算符的优先级运算符的优先级 优优先先级级运算符运算符最高最高#NOT#(负负号)号)*/+(减法)(减法)#EQ#NE#GT#GE#LT#LE#AND#OR#最低最低(=)三类运算符:三类运算符:算术运算符算术运算符逻辑运算符逻辑运算符关系运算符关系运算符集合循环函数集合循环函数四个集合循环函数:四个集合循环函数:FOR、SUM、MAX、MINfunction(setname (set_index_list)|condition:expression_list);objective MAX=SUM(PAIRS(I,J):BENEFIT(I,J)*MATCH(I,J);FOR(STUDENTS(I):constraints SUM(PAIRS(J,K)|J#EQ#I#OR#K#EQ#I:MATCH(J,K)=1);FOR(PAIRS(I,J):BIN(MATCH(I,J);MAXB=MAX(PAIRS(I,J):BENEFIT(I,J);MINB=MIN(PAIRS(I,J):BENEFIT(I,J);Example:状态窗口状态窗口Solver Type:B-and-BGlobal MultistartModel Class:LP,QP,ILP,IQP,PILP,PIQP,NLP,INLP,PINLP State:Global OptimumLocal OptimumFeasibleInfeasibleUnboundedInterruptedUndetermined7 7个选项卡个选项卡(可设置可设置80-9080-90个控制参数个控制参数)程序与数据分离程序与数据分离文文本本文文件件使用外部数据文件使用外部数据文件Cut(orCopy)Paste方法方法FILE输入数据、输入数据、TEXT输出数据(文本文件)输出数据(文本文件)OLE函数与电子表格软件(如函数与电子表格软件(如EXCEL)连接)连接ODBC函数与数据库连接函数与数据库连接LINGO命令脚本文件命令脚本文件LG4(LONGO模型文件)模型文件)LNG(LONGO模型文件)模型文件)LTF(LONGO脚本文件)脚本文件)LDT(LONGO数据文件)数据文件)LRP(LONGO报告文件)报告文件)常用文件后缀常用文件后缀FILEFILE和和TEXTTEXT:文本文件输入输出:文本文件输入输出MODEL:SETS:MYSET/FILE(myfile.txt)/:FILE(myfile.txt);ENDSETSMIN=SUM(MYSET(I):SHIP(I)*COST(I);FOR(MYSET(I):CON1 SHIP(I)NEED(I);CON2 SHIP(I)NEED(I);CON2 SHIP(I)SUPPLY(I);DATA:MYSET=OLE(D:JXIEBJ2004MCMmydata.xls,CITIES);COST,NEED,SUPPLY=OLE(mydata.xls);OLE(mydata.xls,SOLUTION)=SHIP;ENDDATAEND mydata.xls文件中必须有下列名称(及数据):CITIES,COST,NEED,SUPPLY,SOLUTION在在EXCEL中还可以通过中还可以通过“宏宏”自动调用自动调用LINGO(略略)也可以将也可以将EXCEL表格嵌入到表格嵌入到LINGO模型中模型中(略略)演示演示MydataExample.lg4ODBC ODBC:与数据库连接:与数据库连接输入基本集合元素:输入基本集合元素:setname/ODBC(datasource,tablename,columnname)/输入派生集合元素:输入派生集合元素:setname/ODBC(source,table,column1,column2)/目前支持下列目前支持下列DBMS:(如为其他数据库,则需自行安装驱动如为其他数据库,则需自行安装驱动)ACCESS,DBASE,EXCEL,FOXPRO,ORACLE,PARADOX,SQLSERVER,TEXEFILES使用数据库之前,数据源需要在使用数据库之前,数据源需要在ODBC管理器注册管理器注册输入数据:输入数据:Attr_list=ODBC(source,table,column1,column2)输出数据:输出数据:ODBC(source,table,column1,column2)=Attr_list具体例子略具体例子略建模实例与求解建模实例与求解最短路问题最短路问题下料问题下料问题露天矿的运输问题露天矿的运输问题钢管运输问题钢管运输问题最短路问题最短路问题求各点到求各点到T的最短路的最短路56774968658336C1B1C2B2A1A2A3TS6shortestPath.lg4问题问题1.如何下料最节省如何下料最节省?例例 钢管下料钢管下料 问题问题2.客户增加需求:客户增加需求:原料钢管原料钢管:每根每根19米米 4米米50根根 6米米20根根 8米米15根根 客户需求客户需求节省的标准是什么?节省的标准是什么?由于采用不同切割模式太多,会增加生产和管理成本,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过规定切割模式不能超过3种。如何下料最节省?种。如何下料最节省?5米米10根根 按照客户需要在一根原料钢管上安排切割的一种组合。按照客户需要在一根原料钢管上安排切割的一种组合。切割模式切割模式余料余料1 1米米 4米米1根根 6米米1根根 8米米1根根余料余料3米米4米米1根根6米米1根根6米米1根根合理切割模式合理切割模式的余料应小于客户需要钢管的最小尺寸的余料应小于客户需要钢管的最小尺寸余料余料3米米8米米1根根8米米1根根钢管下料钢管下料 为满足客户需要,按照哪些种合理模式,每种模式为满足客户需要,按照哪些种合理模式,每种模式切割多少根原料钢管,最为节省?切割多少根原料钢管,最为节省?合理切割模式合理切割模式2.所用原料钢管总根数最少所用原料钢管总根数最少模式模式4米钢管根数米钢管根数6米钢管根数米钢管根数8米钢管根数米钢管根数余料余料(米米)14003231013201341203511116030170023钢管下料问题钢管下料问题1 1 两种两种标准标准1.原料钢管剩余总余量最小原料钢管剩余总余量最小xi 按第按第i 种模式切割的原料钢管根数种模式切割的原料钢管根数(i=1,2,7)约束约束满足需求满足需求 决策变量决策变量 目标目标1(总余量)(总余量)按模式按模式2切割切割12根根,按模式按模式5切割切割15根,余料根,余料27米米模模式式4米米根数根数6米米根数根数8米米根数根数余余料料14003231013201341203511116030170023需需求求502015最优解:最优解:x2=12,x5=15,其余为其余为0;最优值:最优值:27整数约束:整数约束:xi 为整数为整数当余料没有用处时,当余料没有用处时,通常以总根数最少为目标通常以总根数最少为目标 目标目标2(总根数)(总根数)钢管下料问题钢管下料问题1 1 约束条约束条件不变件不变 最优解:最优解:x2=15,x5=5,x7=5,其余为其余为0;最优值:最优值:25。xi 为整数按模式按模式2切割切割15根,根,按模式按模式5切割切割5根,根,按模式按模式7切割切割5根,根,共共25根,余料根,余料35米米虽余料增加虽余料增加8米,但减少了米,但减少了2根根与与目标目标1的结果的结果“共切割共切割27根,余料根,余料27米米”相比相比钢管下料问题钢管下料问题2 2对大规模问题,用模型的约束条件界定合理模式对大规模问题,用模型的约束条件界定合理模式增加一种需求:增加一种需求:5米米10根;切割根;切割模式不超过模式不超过3种。种。现有现有4种种需求:需求:4米米50根,根,5米米10根,根,6米米20根,根,8米米15根,用枚举法确定合理切割模式,过于复杂。根,用枚举法确定合理切割模式,过于复杂。决策变量决策变量 xi 按第按第i 种模式切割的原料钢管根数种模式切割的原料钢管根数(i=1,2,3)r1i,r2i,r3i,r4i 第第i 种切割模式下,每根原料钢种切割模式下,每根原料钢管生产管生产4米、米、5米、米、6米和米和8米长的钢管的数量米长的钢管的数量满足需求满足需求模式合理:每根模式合理:每根余料不超过余料不超过3米米整数非线性规划模型整数非线性规划模型钢管下料问题钢管下料问题2 2目标函数(目标函数(总根数)总根数)约束约束条件条件整数约束:整数约束:xi,r1i,r2i,r3i,r4i(i=1,2,3)为整数为整数增加约束,缩小可行域,便于求解增加约束,缩小可行域,便于求解原料钢管总根数下界:原料钢管总根数下界:特殊生产计划:对每根原料钢管特殊生产计划:对每根原料钢管模式模式1:切割成:切割成4根根4米钢管,需米钢管,需13根;根;模式模式2:切割成:切割成1根根5米和米和2根根6米钢管,需米钢管,需10根;根;模式模式3:切割成:切割成2根根8米钢管,需米钢管,需8根。根。原料钢管总根数上界:原料钢管总根数上界:31模式排列顺序可任定模式排列顺序可任定钢管下料问题钢管下料问题2 2需求:需求:4米米50根,根,5米米10根,根,6米米20根,根,8米米15根根每根原料钢管长每根原料钢管长19米米LINGOLINGO求解整数非线性规划模型求解整数非线性规划模型Localoptimalsolutionfoundatiteration:12211Objectivevalue:28.00000VariableValueReducedCostX110.000000.000000X210.000002.000000X38.0000001.000000R113.0000000.000000R122.0000000.000000R130.0000000.000000R210.0000000.000000R221.0000000.000000R230.0000000.000000R311.0000000.000000R321.0000000.000000R330.0000000.000000R410.0000000.000000R420.0000000.000000R432.0000000.000000模式模式1:每根原料钢管切割成:每根原料钢管切割成3根根4米和米和1根根6米钢管,共米钢管,共10根;根;模式模式2:每根原料钢管切割成:每根原料钢管切割成2根根4米、米、1根根5米和米和1根根6米钢管,米钢管,共共10根;根;模式模式3:每根原料钢管切割成:每根原料钢管切割成2根根8米钢管,共米钢管,共8根。根。原料钢管总根数为原料钢管总根数为28根。根。演示演示cut02a.lg4;cut02b.lg4露天矿里铲位已分成矿石和岩石露天矿里铲位已分成矿石和岩石:平均铁含量不低于平均铁含量不低于25%的为矿石,否则为岩石。每个铲位的矿石、岩石数的为矿石,否则为岩石。每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。量,以及矿石的平均铁含量(称为品位)都是已知的。每个铲位至多安置一台电铲,电铲平均装车时间每个铲位至多安置一台电铲,电铲平均装车时间5分钟分钟卡车在等待时所耗费的能量也是相当可观的,原则上在卡车在等待时所耗费的能量也是相当可观的,原则上在安排时安排时不应发生卡车等待不应发生卡车等待的情况。的情况。露天矿生产的车辆安排露天矿生产的车辆安排(CUMCM-2003B)矿石卸点需要的铁含量要求都为矿石卸点需要的铁含量要求都为29.5%1%(品位限制)品位限制),搭配量在一个班次(,搭配量在一个班次(8小时)内满足品位限制即可。小时)内满足品位限制即可。卸点在一个班次内不变。卡车载重量为卸点在一个班次内不变。卡车载重量为154吨,平均时吨,平均时速速28km,平均卸车时间为平均卸车时间为3分钟。分钟。问题:出动几台电铲,分别在哪些铲位上;出动几辆问题:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次卡车,分别在哪些路线上各运输多少次?平面示意图问题数据问题数据 距离铲位1铲位2铲位3铲位4铲位5铲位6铲位7铲位8铲位9铲位10矿石漏5.265.194.214.002.952.742.461.900.641.27倒装1.900.991.901.131.272.251.482.043.093.51岩场5.895.615.614.563.513.652.462.461.060.57岩石漏0.641.761.271.832.742.604.213.725.056.10倒装4.423.863.723.162.252.810.781.621.270.50铲位1铲位2铲位3铲位4铲位5铲位6铲位7铲位8铲位9铲位10矿石量095105100105110125105130135125岩石量125110135105115135105115135125铁含量30%28%29%32%31%33%32%31%33%31%问题分析问题分析 与典型的运输问题明显有以下不同:与典型的运输问题明显有以下不同:1.这是运输矿石与岩石两种物资的问题;这是运输矿石与岩石两种物资的问题;2.属于产量大于销量的不平衡运输问题;属于产量大于销量的不平衡运输问题;3.为了完成品位约束,矿石要搭配运输;为了完成品位约束,矿石要搭配运输;4.产地、销地均有单位时间的流量限制;产地、销地均有单位时间的流量限制;5.运输车辆只有一种,每次满载运输,运输车辆只有一种,每次满载运输,154吨吨/车次;车次;6.铲位数多于铲车数意味着要最优的选择不多于铲位数多于铲车数意味着要最优的选择不多于7个个产地作为最后结果中的产地;产地作为最后结果中的产地;7.最后求出各条路线上的派出车辆数及安排。最后求出各条路线上的派出车辆数及安排。近似处理:近似处理:先求出产位、卸点每条线路上的运输量先求出产位、卸点每条线路上的运输量(MIP模型模型)然后求出各条路线上的派出车辆数及安排然后求出各条路线上的派出车辆数及安排模型假设模型假设卡车在一个班次中不应发生等待或熄火后再启动卡车在一个班次中不应发生等待或熄火后再启动的情况;的情况;在铲位或卸点处由两条路线以上造成的冲突问题在铲位或卸点处由两条路线以上造成的冲突问题面前,我们认为只要平均时间能完成任务,就认面前,我们认为只要平均时间能完成任务,就认为不冲突。我们不排时地进行讨论;为不冲突。我们不排时地进行讨论;空载与重载的速度都是空载与重载的速度都是28km/h,耗油相差很大;,耗油相差很大;卡车可提前退出系统,等等。卡车可提前退出系统,等等。如理解为严格不等待,难以用数学规划模型来解如理解为严格不等待,难以用数学规划模型来解个别参数队找到了可行解个别参数队找到了可行解(略)(略)符号符号xij:从:从i铲位到铲位到j号卸点的石料运量号卸点的石料运量(车)(车)单位:单位:吨;吨;cij:从:从i号铲位到号铲位到j号卸点的距离号卸点的距离公里;公里;Tij:从从i号铲位到号号铲位到号j卸点路线上运行一个周期平均时间卸点路线上运行一个周期平均时间分;分;Aij:从号铲位到号卸点最多能同时运行的卡车数:从号铲位到号卸点最多能同时运行的卡车数辆;辆;Bij:从号铲位到号卸点路线上一辆车最多可运行的次数:从号铲位到号卸点路线上一辆车最多可运行的次数次;次;pi:i号铲位的矿石铁含量号铲位的矿石铁含量p=(30,28,29,32,31,33,32,31,33,31)%qj:j号卸点任务需求,号卸点任务需求,q=(1.2,1.3,1.3,1.9,1.3)*10000吨吨cki:i号铲位的铁矿石储量号铲位的铁矿石储量万吨万吨cyi:i号铲位的岩石储量号铲位的岩石储量万吨万吨fi:描述第描述第i号铲位是否使用的号铲位是否使用的0-1变量,取变量,取1为使用;为使用;0为关闭。为关闭。(近似近似)优化模型(1)道路能力道路能力(卡车数卡车数)约束约束(2)电铲能力约束(3)卸点能力约束(4)铲位储量约束(5)产量任务约束(6)铁含量约束(7)电铲数量约束(8)整数约束.xij为非负整数fi 为0-1整数计算结果(计算结果(LINGOLINGO软件)软件)铲位1铲位2铲位3铲位4铲位5铲位6铲位7铲位8铲位9铲位10矿漏131354541111倒42424343岩场70701515岩漏81814343倒13132 27070铲位1铲位2铲位3铲位4铲位5铲位6铲位7铲位8铲位9铲位10矿石漏0.8671.8620.314倒场1.0771.162岩场1.8920.326岩石漏1.8411.229倒场0.6840.11.489cumcm2003b1.lg4计算结果(派车)计算结果(派车)铲位1铲位2铲位3铲位4铲位5铲位6铲位7铲位8铲位9

    注意事项

    本文(matlab符号运算案例.ppt)为本站会员(wuy****n92)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开