欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019年高三数学上学期期末复习备考之精准复习模拟题(B卷)苏教版.doc

    • 资源ID:708233       资源大小:1.58MB        全文页数:20页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019年高三数学上学期期末复习备考之精准复习模拟题(B卷)苏教版.doc

    12017-20182017-2018 学年高三数学上学期期末复习备考之精准复习模拟题(学年高三数学上学期期末复习备考之精准复习模拟题(B B 卷)苏教卷)苏教版版考试范围:xxx;考试时间:100 分钟;命题人:xxx一、填空题一、填空题1已知实数 , ,且满足,则的最小值为_, x y0,0xy24xyxy2xy【答案】4 342已知函数(其中且的值域为 R,则实数的取值范围为 1 2log,2 23 ,2xxx f x aax 0a 1)a a_【答案】1,12【解析】由题意,分段函数的值域为其在上是单调函数,由此可知 根据图象可知: R,R01a,解得 2 1 2log 223aa1 2a 综上,可得 112a即答案为1,123若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值为024 24xxyxy4ykxk_【答案】7 22【解析】不等式组所表示的平面区域为三角形 024 24xxyxyABC由故点,点 4 243 244 3xxy xyy0,2A又因为平面区域被直线分为面积相等的两部分,且过定点 4ykx4ykx0,4由此可得点与点到直线的距离相等,即 解得 或AC4ykx 224440243311kkkk 7 2k (舍)1 2k 即答案为7 24设函数,则满足的的取值范围为_ 241,1 3,1xxf xxx 23ff af aa【答案】或1 3a 1 2a 【解析】绘制函数图象如图所示,结合函数图象可得,函数在 R 上单调递增,很明显的值域为 R,设,则, f x tf atR 23f tt当时: ,解得: ,此时,1t 2413tt 1211,3tt1 3t 当时, 恒成立,1t 2233tt结合函数图象, 有: , 1 3f x 1141,33xx 有: . 1f x 14112xx 3据此可得: 的取值范围为或.a1 3a 1 2a 点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围5扇形中,弦为劣弧 上的动点, 与交于点,则的最小值是AOB2ABC ,AB ABOCP·OP BP _【答案】1 4点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得” ,若忽略了某个条件,就会出现错误46, “”是“角成等差数列”成立的_条ABCsin3cossincosCAAB, ,A B C件 (填“充分不必要” 、 “必要不充分” 、 “充要” 、 “既不充分也不必要”之一) 【答案】必要不充分【解析】若 A,B,C 成等差数列,则 A+C=2B,B=60°,若,sin3cossincosCAAB则,sin3cos cossin cosABABAB即,sin coscos sin3cos cossin cosABABABAB,cos sin3cos cosABAB若 cosA=0 或,tan3B 即 A=90°或 B=60°,则“”是“角成等差数列”成立的必要不充分条件sin3cossincosCAAB, ,A B C7设是等比数列的前项和, ,若,则的最小值为nS na0na 6324SS96SS_【答案】16【解析】很明显等比数列an的公比 q>0,q1.S62S3=4,.63 11112411a qa qqq .q>1.则:23 1141a qq当且仅当 q3=2,即时取等号。32q S9S6的最小值为 16.8如图,在直角梯形中, 为中点,若ABCD0/ /,90 ,4,2,ABCDADCABADEBC,则_·4AB AC ·AE BC 5【答案】13 29给出下列命题:(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面垂直,那么平行于其中一个平面的直线一定平行于另一个平面;(3)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;6(4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面则其中所有真命题的序号是_【答案】 (1) (3)【解析】逐一考查所给的命题:(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面垂直,那么平行于其中一个平面的直线一定垂直于另一个平面;(3)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;(4)若两个平面垂直,那么其中一个平面内的直线不一定垂直于另一个平面综上可得:真命题的序号是(1) (3).10中,若、依次成等比数列,则的取值范围为_.ABCtanAtanBtanCB【答案】,3 2 点睛:由两角和的正切值可以建立与、的关系,题目中、依次成等tanBtanAtanCtanAtanBtanC比数列也会有数量关系,再运用基本不等式即可求出的取值范围。B11已知, , ,则的最小值为_.0x 0y 22xy2221 1xy xy7【答案】9 4【解析】22222141221121224111xxxyyxyxyxyxy22xy原式212121121214111414xyxyxyxyxy21219421144xyxy故答案为9 412若集合中恰有唯一的元素,则实数的值为_.22|8212 xx aAxa【答案】2【解析】集合中恰有唯一的元素22|8212 xx aAx当时, 1x 221xxaa 则18212a2a故答案为213已知函数在区间上存在最值,则实数a的取值范围是 2342ln2f xxaxx1 2,_【答案】95,【解析】,故可将题意等价的转化为, 2342234xaxfxxaxx 120ff即,解得,故答案为.590aa95a 95,14设数列满足,且对任意的,满足 na13 8a *nN243 ,10 3nn nnnnaaaa则=_.2017a【答案】20173 88【解析】对任意的,满足,*nN243 ,10 3nn nnnnaaaa, 2 42210 33310 3nnnn nnnnaaaa 。410 3nnnaa 20172017201320132009511aaaaaaaa201320093103338。50420173811331081 188答案: 。20173 8二、解答题二、解答题15南京市江北新区计划在一个竖直长度为 20 米的瀑布正前方修建一座观光电梯。如图所示,ABDE瀑布底部距离水平地面的高度为 60 米,电梯上设有一个安全拍照口, 上升的最大高度为AACPP60 米。设距离水平地面的高度为米, 处拍照瀑布的视角为。摄影爱好者发现,要使照PaPBPA片清晰,视角不能小于。30(1)当米时,视角恰好为,求电梯和山脚的水平距离。=50a30CD(2)要使电梯拍照口的高度在 52 米及以上时,拍出的照片均清晰,请求出电梯和山脚的水平距离Pa的取值范围。CD【答案】 (1);(2).10 310 32 1910 32 19x9试题解析:(1)设,过作,垂足为。CDxPPHBCH, ,30tan BPHx10tan APHx3010tantantan3030 101.xxBPHBPHxx 解得: 10 3CDx(2), 80tanaBPHx60tanaAPHx8060tantan80601.aa xxBPHBPHaa xx 由题知在上恒成立tantan3052,60a在上恒成立220 38060xxaa52,60a解得 220 3224xx10 32 1910 32 19x答:CD 的取值范围10 32 1910 32 19x16已知函数 211lnf xxa xx aR (1)当时,求函数的单调区间;0a f x(2)若函数既有一个极小值又有一个极大值,求的取值范围; 1g xf xxa(3)若存在,使得当时, 的值域是,求的取值范围1,2b0,xb f x ,f ba10【答案】(1) 的增区间为,减区间为;(2) ;(3) . f x1,0,12,1 ln2,【解析】试题分析:(1)当时, ,利用导函数研究函数的单调性可得函数的增区间为,减0a 1xfxx f x1,区间为;0,1(2)求解导函数有,令,则方程必有两 2221axaxgxx 22210h xaxaxx 0h x 个不等的正根,据此结合二次方程根的分布可得实数的取值范围是;a2,(3)求解导函数, ,分类讨论时和时两种情况可得的取值范围 121xaxfxx 0a 0a a是.1 ln2,(2),则, 21lng xa xx 2122121axaxgxa xxx 令,若函数有两个极值点, 22210h xaxaxx g x则方程必有两个不等的正根, 0h x 设两根为,于是,解得,12,x x2121220480 10102aaaxxx xa 2a 11当时, 有两个不相等的正实根,设为,不妨设,2a 0h x 12,x x12xx则, 122a xxxxh xgxxx 当时, , , 在上为减函数;10xx 0h x 0gx g x10,x当时, , 在上为增函数;12xxx 0h x 0,gxg x12,x x当时, ,函数在上为减函数2xx 0,0h xgx g x2,x 由此, 是函数的极小值点, 是函数的极大值点符合题意 1xx g x2xx g x综上,所求实数的取值范围是;a2,当时, ,0a 1212a xxafxx (i)当,即时,当变化时, 的变化情况如下:112a1 2a x ,fxf xx10,2a1 2a1,12a11, fx-0+0- f x减函数极小值增函数极大值减函数12若满足题意,只需满足,即, 122ffa211111ln1ln2222aaaaa 整理得,令,1ln2ln2 104aa 11ln2ln2 142F aaaa当时, ,所以在上为增函数,1 2a 221141044aFaaaa F a1,2即当时, ,1 2a 111ln2ln0222F aFe可见,当时, 恒成立,1 2a 122ffa故当时,函数的值域是;1,0,122axbb f x ,f b所以满足题意1 2a (ii)当,即时, ,当且仅当时取等号,112a1 2a 21xfxx 1x 所以在上为减函数,从而在上为减函数, f x0, f x0,b符合题意;(iii)当,即时,当变化时, 的变化情况如下表:112a102ax ,fxf xx0,1111,2a1 2a1,2a fx-0+0- f x减函数极小值 0增函数极大值减函数若满足题意,只需满足,且(若,不符合题意) , 21ff122a122a即,且,1 ln2a 1 4a 13又,所以,此时, ,11 ln241 ln2a 11 ln22a综上, ,1 ln2a 所以,实数的取值范围是a1 ln2,点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系 (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数 (3)利用导数求函数的最值(极值),解决生活中的优化问题 (4)考查数形结合思想的应用17已知数列中, ,且对任意正整数都成立,数列的前 na121,aaa11nnnak aan na项和为nnS(1)若,且,求;1 2k 18171Sa(2)是否存在实数,使数列是公比为 1 的等比数列,且任意相邻三项按某顺序排k na12,mmmaaa列后成等差数列,若存在,求出所有的值;若不存在,请说明理由;k(3)若,求 (用表示) 1 2k nS, a n【答案】(1) ;(2) ;(3) .2a 2 5k 111 ,2 1 ,2nnan Snan 是奇数是偶数【解析】试题分析:(1)由题意求得首项,公差,结合等差数列前 n 项和公式列方程可得 ;11a 1da2a (2)假设存在满足题意的实数 k,分类讨论可得;2 5k (3)结合题意分类讨论,然后分组求和 可得.111 ,2 1 ,2nnan Snan 是奇数是偶数14(2)设数列是等比数列,则它的公比,所以, na21aqaa11 12,mmm mmmaaaaaa 为等差中项,则,1ma122mmmaaa即,解得,不合题意;112mmmaaa1a 为等差中项,则,ma122mmmaaa即,化简得: ,解得或(舍去) ;112mmmaaa220aa2a 1a 若为等差中项,则,2ma212mmmaaa即,化简得: ,解得;112mmmaaa2210aa 1 2a ;1 112 22 15n m mm mmaaakaaaaa 综上可得,满足要求的实数有且仅有一个, ;k2 5k (3),则,1 2k 121 2nnnaaa ,21132211,nnnnnnnnnnaaaaaaaaaa 当是偶数时, n 1234112341nnnnnSaaaaaaaaaaaa,12122nnaaa当是奇数时, n 12341123451nnnnnSaaaaaaaaaaaaa15, 12111211111 ,2222nnnaaaaaaan 也适合上式,1n 综上可得, 111 ,2 1 ,2nnan Snan 是奇数是偶数18已知二次函数,关于实数的不等式的解集为 223f xmxxx 0f x 1,n(1)当时,解关于的不等式: ;0a x2112axnmxax (2)是否存在实数,使得关于的函数()的最小值为?若0,1ax 13xxyf aa1,2x9 2存在,求实数的值;若不存在,说明理由a【答案】(1) 答案见解析;(2)存在满足条件的1 2a 【解析】试题分析:(1)由题意结合二次函数的性质分类讨论可得:当时,原不等式解集为;0a |2x x 当时,原不等式的解集为;01a22x xxa或当时,原不等式的解集为1a 22x xxa或(2)假设存在满足条件的实数,结合(1)的结论,换元令,则a2xat ata , ,结合二次函数的性质讨论可得在满足条件的2323ytat2ata 1 2a 试题解析:(1)由不等式的解集为知,2230mxx1,n关于的方程的两根为-1 和,且,x2230mxxn0m 由根与系数关系,得, , 21 31nmnm 1 3m n 16所以原不等式化为,220xax当时,原不等式转化为,解得;0a 20x2x 当时,原不等式化为,且,解得或;01a220xxa22a2xa2x 当时,原不等式化为,解得且;1a 220xxR2x 当时,原不等式化为,且,1a 220xxa22a解得或;2xa2x 综上所述:当时,原不等式解集为;0a |2x x 当时,原不等式的解集为;01a22x xxa或当时,原不等式的解集为1a 22x xxa或(2)假设存在满足条件的实数,a由(1)得: , 21,23mf xxx, 123323xxxxyf aaaaa令,则, ,2xat ata 2323ytat2ata 对称轴,32 2at因为,所以, ,0,1a21aa325122a所以函数在单调递减,2323ytat2,aa所以当时, 的最小值为,tay292232yaa 解得(舍去) ,或,3 2a 1 2a 故存在满足条件的1 2a 19某景点拟建一个扇环形状的花坛(如图所示) ,按设计要求扇环的周长为 36 米,其中大圆弧所在圆的半径为 14 米,设小圆弧所在圆的半径为米,圆心角为(弧度).x17 求关于的函数关系式;x 已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为 4 元/米,弧线部分的装饰费用为 16 元/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.yyxy【答案】 的最大值为28,0,1414xxx21056,0,142410xxyxxy1 4【解析】试题分析:(1)根据扇形的周长公式进行求解即可(2)结合花坛的面积公式,结合费用之间的关系进行求解即可试题解析:由题可知, 2 141436xx所以. 28,0,1414xxx18故花坛的面积与装饰总费用之比为,21056,0,142410xxyxx且的最大值为y1 4【点睛】本题主要考查函数的应用问题,结合扇形的周长和面积公式以及函数的性质是解决问题的关键20已知数列中, ,前项和满足() na13a nnS123nnaS*n 求数列的通项公式; na 记,求数列的前项和;111n n nnabaa nbnnT 是否存在整数对(其中, )满足?若存在,求出,m nZm*n22750nnamam所有的满足题意的整数对;若不存在,请说明理由,m n【答案】(1) ;(2) ;(3) , , 3nna 11 11 2 231nnT2,134,234,3【解析】试题分析: 当时,可得() ,而当时, 12n 13nnaa2n 1n () ,可得到数列是首项为,公比也为的等比数列,从而可求数列的通13nnaa*nN na33 na项公式;19由知,代入,对通项公式进行裂项,即可求得数列的前项 2 13nna 111n n nnabaa nbn和;nT由 知, 1 13 1131 31n n nnn nnabaa , 1111 2 3131nn则 1111111111 11 22882631312 231nnnnT,即,22750nnamam232 3750nnmm即, 237354032 354035373737nnnn n nnnm 若存在整数对,则必须是整数,其中只能是的因数,,m n40 37n37n40可得时, ; 时, ; 时, ; 1n 2m 2n 34m 3n 34m 综上所有的满足题意得整数对为, , 2,134,234,320

    注意事项

    本文(2019年高三数学上学期期末复习备考之精准复习模拟题(B卷)苏教版.doc)为本站会员(随风)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开