九年级二次根式.ppt
二二 次次 根根 式式单元复习(单元复习(1)二二 次次 根根 式式三个概念三个性质两个公式四种运算最简二次根式最简二次根式同类二次根式同类二次根式有理化因式有理化因式1、2、加加 、减、乘、除、减、乘、除知识结构知识结构-不要求,只不要求,只需了解需了解1、3、=a22、二次根式的概念二次根式的概念形如形如(a 0)的式子的式子叫做二次根式叫做二次根式二次根式的定义:二次根式的定义:二次根式的识别:二次根式的识别:()被开方数()被开方数()根指数是()根指数是判别下列各式中那些是二次根式?判别下列各式中那些是二次根式?那些不是?为什么?那些不是?为什么?题型题型1:确定二次根式中被开方数所含字母的取值范围确定二次根式中被开方数所含字母的取值范围.1 1.当当 _时,时,有意义。有意义。3.3.求下列二次根式中字母的取值范围求下列二次根式中字母的取值范围解得解得 -5x-5x3 3解:解:说明:二次根式被开方数说明:二次根式被开方数不小于不小于0,所以求二次根,所以求二次根式中字母的取值范围常转式中字母的取值范围常转化为不等式(组)化为不等式(组)33有意义的条件是有意义的条件是 .2.+题型题型2:二次根式的非负性的应用二次根式的非负性的应用.1.1.已知:已知:+=0,+=0,求求 x-yx-y 的值的值.2.2.已知已知x,yx,y为实数为实数,且且 +3(y-2)+3(y-2)2 2=0,=0,则则x-yx-y的值为的值为()A.3 B.-3 C.1 D.-1 A.3 B.-3 C.1 D.-1解:由题意,得解:由题意,得 x-4=0 x-4=0 且且 2x+y=02x+y=0解得解得 x=4,y=-8x=4,y=-8x-yx-y=4-(-8)=4+8=12=4-(-8)=4+8=12D D注意:注意:几个非负数的和为几个非负数的和为0 0,则每一个非负数必为,则每一个非负数必为0 0。题型题型3最简二次根式:、被开方数不含分数;、被开方数不含分数;、被开方数不含开的尽方的因数或因式;、被开方数不含开的尽方的因数或因式;注意:分母中不含二次根式分母中不含二次根式。练习1:把下列各式化为最简二次根把下列各式化为最简二次根式式化简二次根式的方法化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因)如果被开方数是整数或整式时,先因数分解或因式分解式分解,然后利用积的算术平方根的性质然后利用积的算术平方根的性质,将式子化简。将式子化简。(2)如果被开方数是分数或分式时)如果被开方数是分数或分式时,先利用商的算术平先利用商的算术平方根的性质方根的性质,将其变为二次根式相除的形式将其变为二次根式相除的形式,然后利用分然后利用分母有理化母有理化,将式子化简。将式子化简。练习:把下列各式化成最简二次根式练习:把下列各式化成最简二次根式题型题型4同类二次根式同类二次根式:化为最简二次根式后被开方数相同的二次根式。、是同类二次根式下列哪些是同类二次根式同类二次根式题型5:利用进行分解因式例:分解因式:练习在实数范围内分解因式练习在实数范围内分解因式(1)(2)1要使下列式子有意义,求字母要使下列式子有意义,求字母 的取值范围的取值范围()()()()()()练习与反馈练习与反馈 2()()()当时,()当时,(),(),则的取值范围是则的取值范围是()若,()若,则的取值范围是则的取值范围是1若若求的值求的值2计算计算()()()()练一练