二次函数y=ax2的图象与性质.ppt.ppt
回顾回顾n n一次函数、反比例函数的图象分别是 n n直线、双曲线 .二次函数y=ax2的 图象和性质xyxy=x2y=-x2.0-2-1.5-1-0.511.50.52 函数图象画法函数图象画法列表列表描点描点连线连线00.2512.2540.2512.254 描点法描点法描点法描点法0-0.25-1-2.25-4-0.25-1-2.25-4二次函数二次函数y=ax2的图象形如物体抛射时的图象形如物体抛射时所经过的路线,我们把它叫做所经过的路线,我们把它叫做抛物线抛物线。下面是两个同学画的下面是两个同学画的 y=0.5x2 和和 y=-0.5x2的图象的图象,你认为他们的作你认为他们的作图正确吗图正确吗?为什么为什么?下面是两个同学画的下面是两个同学画的 y=0.5x2 和和 y=-0.5x2的图象的图象,你认为他们的作你认为他们的作图正确吗图正确吗?为什么为什么?课堂练习课本P71、观察右图,、观察右图,并完成填空。并完成填空。抛物抛物线线y=x2y=-x2顶点坐标顶点坐标对称对称轴轴位位置置开口方向开口方向增减增减性性极极值值(0,0)(0,0)y轴(直线轴(直线x=0)y轴轴(直线直线x=0)在在x轴的上方(除顶点轴的上方(除顶点外)外)在在x轴的下方(除顶点外)轴的下方(除顶点外)向上向上向下向下当当x=0时,最小值为时,最小值为0。当当x=0时,最大值为时,最大值为0。二次函数二次函数y=ax2的性质的性质、顶点坐标与对称轴、顶点坐标与对称轴、位置与开口方向、位置与开口方向、增减性与极值、增减性与极值2 2、练习、练习2 23 3、想一想、想一想4 4、练习、练习4 4动画演示动画演示当当a0时,在对称轴的时,在对称轴的左侧,左侧,y随着随着x的增大而的增大而减小。减小。当当a0时,在对称轴的时,在对称轴的右侧,右侧,y随着随着x的增大而的增大而增大。增大。当当a0时,在对称轴的时,在对称轴的左侧,左侧,y随着随着x的增大而的增大而增大。增大。当当a0时,抛物线时,抛物线y=ax2在在x轴的上方(除顶点外),它的开口向上,并且轴的上方(除顶点外),它的开口向上,并且 向上无限伸展;向上无限伸展;当当a0时,在对称轴的左侧,时,在对称轴的左侧,y随着随着x的增大而减小;的增大而减小;在对称轴右侧,在对称轴右侧,y随着随着x的增大而增大。当的增大而增大。当x=0时函数时函数y的值最小。的值最小。当当a0时,在对称轴的左侧,时,在对称轴的左侧,y随着随着x的增大而增大;的增大而增大;在对称轴的右侧,在对称轴的右侧,y随着随着x增大而减小,当增大而减小,当x=0时,函数时,函数y的值最大。的值最大。二次函数y=ax2的性质2 2、根据左边已画好的函数图象填空、根据左边已画好的函数图象填空:(1)抛物线)抛物线y=2x2的顶点坐标是的顶点坐标是 ,对称轴是对称轴是 ,在,在 侧,侧,y随着随着x的增大而增大;在的增大而增大;在 侧,侧,y随着随着x的增大而减小,当的增大而减小,当x=时,时,函数函数y的值最小,最小值是的值最小,最小值是 ,抛物抛物线线y=2x2在在x轴的轴的 方(除顶点外)。方(除顶点外)。(2)抛物线)抛物线 在在x轴的轴的 方(除顶点外),在对称轴的方(除顶点外),在对称轴的左侧,左侧,y随着随着x的的 ;在对称轴的右侧,;在对称轴的右侧,y随着随着x的的 ,当,当x=0时,函数时,函数y的值最大,最大值是的值最大,最大值是 ,当当x 0时,时,y0.(0,0)y轴轴对称轴的右对称轴的右对称轴的左对称轴的左00上上下下增大而增大增大而增大增大而减小增大而减小04、已知抛物线、已知抛物线y=ax2经过点经过点A(-2,-8)。)。(1)求此抛物线的函数解析式;)求此抛物线的函数解析式;(2)判断点)判断点B(-1,-4)是否在此抛物线上。)是否在此抛物线上。(3)求出此抛物线上纵坐标为)求出此抛物线上纵坐标为-6的点的坐标。的点的坐标。解(解(1)把()把(-2,-8)代入)代入y=ax2,得得-8=a(-2)2,解出解出a=-2,所求函数解析式为所求函数解析式为y=-2x2.(2)因为)因为 ,所以点,所以点B(-1,-4)不在此抛物线上。不在此抛物线上。(3)由)由-6=-2x2,得得x2=3,所以纵坐标为所以纵坐标为-6的点有两个,它们分别是的点有两个,它们分别是 y=-2x2我有哪些收获呢?我有哪些收获呢?与大家共分享!与大家共分享!学学 而而 不不 思思 则则 罔罔回回头头一一看看,我我想想说说作业:打印的一课一练