欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    全等三角形判定SSS.ppt

    • 资源ID:70988972       资源大小:1.56MB        全文页数:47页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    全等三角形判定SSS.ppt

    ABC 1.什么叫全等三角形?什么叫全等三角形?能够重合的两个三角形叫能够重合的两个三角形叫 全等三角形全等三角形。2.全等三角形有什么全等三角形有什么性质?性质?全等三角形的对应边相等,对应角相等全等三角形的对应边相等,对应角相等 .已知已知 ,试找出其中相等的边与角,试找出其中相等的边与角 ABC即:三条边对应相等,三个角对应相等的两个三角形全等。六个条件,可得到什么结论?六个条件,可得到什么结论?与与 满足上述六个条件中的满足上述六个条件中的一部一部分分是否能保证是否能保证 与与 全等呢?全等呢?ABC一个条件可以吗?一个条件可以吗?两个条件可以吗?两个条件可以吗?一个条件可以吗?一个条件可以吗?1.有有一条边一条边相等的两个三角形相等的两个三角形不一定全等不一定全等探究活动探究活动 课本课本62.有有一个角一个角相等的两个三角形相等的两个三角形不一定全等不一定全等结论:结论:有一个条件相等不能保证两个三角形全等有一个条件相等不能保证两个三角形全等.6cm300有有两个条件对应相等不能保证三角形全等两个条件对应相等不能保证三角形全等.60o300不一定全等不一定全等1.有有两个角两个角对应相等的两个三角形对应相等的两个三角形两个条件可以吗?两个条件可以吗?3.有有一个角和一条边一个角和一条边对应相等的两个三角形对应相等的两个三角形2.有有两条边两条边对应相等的两个三角形对应相等的两个三角形4cm6cm不一定全等不一定全等30060o4cm6cm不一定全等30o 6cm结论:结论:探究活动探究活动 课本课本6三个条件呢?三个条件呢?探究活动探究活动 1.三个角;三个角;2.三条边;三条边;3.两边一角;两边一角;4.两角一边。两角一边。如如果果给给出出三三个个条条件件画画三三角角形形,你你能能说说出出有有哪哪几几种种可可能能的的情情况况?结论结论:三个内角对应相等的三角形三个内角对应相等的三角形 不一定全等不一定全等。探究活动探究活动 1.有有三个角三个角对应相等的两个三角形对应相等的两个三角形60o30030060o90o90o三个条件呢?三个条件呢?若已知一个三角形的三条边,你能画出若已知一个三角形的三条边,你能画出这个三角形吗?这个三角形吗?画一个三角形,使它的三边长分画一个三角形,使它的三边长分别为别为4cm,5cm,7cm.三边对应相等的两个三角形会全等吗?三边对应相等的两个三角形会全等吗?画法:画法:1.画线段画线段AB=4cm;2.分别以分别以A、B为圆心,为圆心,5cm、7cm 长为半径作圆弧,交于点长为半径作圆弧,交于点C;3.连结连结AB、AC;ABC就是所求的三角形就是所求的三角形.探究活动探究活动 三边相等的两个三角形会全等吗?三边相等的两个三角形会全等吗?画法:画法:探究活动探究活动 你能得出什你能得出什么结论?么结论?课本课本6 三边对应相等的两个三角形全等,简写三边对应相等的两个三角形全等,简写为为“边边边边边边”或或“SSS”。用上面的结论可以判定两个三角形全等用上面的结论可以判定两个三角形全等判断两个三角形全等的推理过程,叫做判断两个三角形全等的推理过程,叫做证明证明三角形全等三角形全等ABCABC三边对应相等的两个三角形全等三边对应相等的两个三角形全等.(简写成简写成“边边边边边边”或或“SSS”)如何用符号语言来表达呢如何用符号语言来表达呢?结结论论课本课本7 A=_ B=_ C=_B ABC ADC(SSS)例例1 已知:如图,已知:如图,AB=AD,BC=CD,求证求证:ABC ADCABCDACAC ()AB=AD ()BC=CD ()证明:证明:在在ABC和和ADC中中=已知已知已知已知 公共边公共边判断两个三角形全等的推理过程,叫做证明三角形全等。判断两个三角形全等的推理过程,叫做证明三角形全等。分析:分析:要证明要证明 ABC ADC,首先看这两个三角首先看这两个三角形的形的三条边三条边是否对应相等。是否对应相等。结论结论:从这题的证明中可以看出,证明是由题从这题的证明中可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推设(已知)出发,经过一步步的推理,最后推出结论正确的过程。出结论正确的过程。准备条件:准备条件:证全等时要用的间接条件要先证好;证全等时要用的间接条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:例例2 如图,如图,ABCABC是一个钢架,是一个钢架,AB=ACAB=AC,ADAD是连接点是连接点A A与与BCBC中点中点D D的支架的支架.求证:求证:ABDACD.ABDACD.ABCDABCD.CDBD BCD 的中点,是证明:QACDABD 中,和在DDADADCDBDACAB ,.SSSACD ABD )(DD(1)(1)(2)(2)(2)(2)BAD=CAD.BAD=CAD.BAD=CAD.BAD=CAD.(2)由()由(1)得)得ABDACD,BAD=BAD=CAD.CAD.已知已知AOBAOB(如图),(如图),用直尺和圆规用直尺和圆规作作A AO OB B,使使A AO OB B=AOBAOB。OOA AB BOOAABB课课 本本 P7-8 工人师傅常用角尺平分一个任意角工人师傅常用角尺平分一个任意角.做法如下:如图,做法如下:如图,AOB是一个任意角,在边是一个任意角,在边OA,OB上分别取上分别取OM=ON,移动,移动角尺,使角尺两边相同的刻度分别与角尺,使角尺两边相同的刻度分别与M,N重合重合.过角尺顶点过角尺顶点C的射线的射线OC便是便是AOB的平分线的平分线.为什么?为什么?课课 本本 P8OMABNC 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。证明:证明:BD=CE BD-ED=CE-ED,即即BE=CD。CABDE在在AEB和和ADC中,中,AB=ACAE=ADBE=CD AEB ADC (sss)CBDAFEDB思思考考 已知已知AC=FE,BC=DE,点,点A、D、B、F在一条直线上,在一条直线上,AD=FB.求证:求证:ABC FDE分析:分析:要证明要证明ABC FDE,还应该有还应该有AB=DF这个条件这个条件 DB是是AB与与DF的公共部分,的公共部分,且且AD=BF AD+DB=BF+DB 即即 AB=DF思思考考FDBABC 中,中,和和在在D DD DFBACDBBCFDAB ,.SSSFDB ABC )(D DD DCBDAFEDB已知已知AC=FE,BC=DE,点,点A、D、B、F在一条直线上,在一条直线上,AD=FB.求证:求证:ABC FDE练习练习1:如图,如图,ABAC,BDCD,BHCH,图中图中有几组全等的三角形?它们全等的条件是什么?有几组全等的三角形?它们全等的条件是什么?HDCBA解:有三组。解:有三组。在在ABH和和ACH中中,AB=AC,BH=CH,AH=AH,ABHACH(SSS););BD=CD,BH=CH,DH=DH,DBHDCH(SSS).在在ABH和和ACH中中,AB=AC,BD=CD,AD=AD,ABDACD(SSS););在在ABH和和ACH中中(2 2)如图,)如图,D D、F F是线段是线段BCBC上的两点,上的两点,AB=CEAB=CE,AF=DEAF=DE,要使要使ABFECD ABFECD,还需要条件还需要条件 .BCBCBCBCDCBBF=DC 或或 BD=FCA ABCD练习练习2解:解:ABCDCB理由如下:理由如下:AB=CDAC=BD=ABD ()SSSSSS(1 1)如图,)如图,AB=CDAB=CD,AC=BDAC=BD,ABCABC和和DCBDCB是否全等是否全等?试说明理由。?试说明理由。AE B D F CB D F C C图图1已知:如图已知:如图1 1,AC=FEAC=FE,AD=FB,BC=DEAD=FB,BC=DE求证:求证:ABCABCFDE FDE 证明:证明:AD=FBAD=FB AB=FDAB=FD(等式性质)(等式性质)在在ABCABC和和FDE FDE 中中AC=FEAC=FE(已知)(已知)BC=BC=DEDE(已(已知知)AB=FDAB=FD(已证)(已证)ABCFDEABCFDE(SSSSSS)求证:求证:C=C=E E,AcEDBF=?。C=E(全等三角形的对应角相等)(全等三角形的对应角相等)求证:求证:ACEFACEF;DEBCDEBCn已知已知:如图,如图,AB=AC,DB=DC,AB=AC,DB=DC,n请说明请说明B=CB=C成立的理由成立的理由ABCD在在ABDABD和和ACDACD中,中,AB=AC (已知)已知)DB=DC (已知)(已知)AD=AD (公共边)(公共边)ABDACD (SSS)解:连接解:连接ADAD B=C (全等三角形的对应角相等)全等三角形的对应角相等)n已知已知:如图如图,四边形四边形ABCD中,中,AD=CB,AB=CDn求证:求证:A C。A C D B分析:要证两角或两线段相等,常先证这两角或两线段分析:要证两角或两线段相等,常先证这两角或两线段所在的两三角形全等,从而需构造全等三角形。所在的两三角形全等,从而需构造全等三角形。构造公共边是常添的辅助线构造公共边是常添的辅助线1234已知:已知:AC=AD,BC=BD,AC=AD,BC=BD,求证:求证:ABAB是是DACDAC的平分线的平分线.AC=AD()AC=AD()BC=BD()BC=BD()AB=AB=ABAB()()ABCABD()ABCABD()1=21=2ABAB是是DACDAC的平分线的平分线A AB BC CD D1 12 2(全等三角形的对应角相等)(全等三角形的对应角相等)已知已知已知已知公共边公共边SSSSSS(角平分线定义)(角平分线定义)证明证明:在在ABCABC和和ABDABD中中练习练习3、如图,在四边形如图,在四边形ABCD中中,AB=CD,AD=CB,求证:求证:A=C.DABCn证明:证明:在在ABD和和CDB中中AB=CDAD=CBBD=DBABDACD(SSS)(已知)(已知)(已知)(已知)(公共边)(公共边)A=C(全等三角形的对应角相等全等三角形的对应角相等)你能说明你能说明ABCD,ADBC吗?吗?解:解:E、F分别是分别是AB,CD的中点(的中点()又又AB=CDAE=CF在在ADE与与CBF中中AE=ADECBF ()AE=AB CF=CD()1212补充练习:补充练习:如图,已知如图,已知AB=CD,AD=CB,E、F分别是分别是AB,CD的中点,且的中点,且DE=BF,说出下列判断成立的理由说出下列判断成立的理由.ADECBFA=C线段中点的定义线段中点的定义CFADABCDSSSADECBF全等三角形全等三角形对应角相等对应角相等已知已知ADBCFECB A=C ()=D16如图所示(如图所示(1 1),),AB=CD,AD=BC,OAB=CD,AD=BC,O为为ACAC的中点,的中点,过过OO点的直线分别与点的直线分别与ADAD,BCBC相交于相交于MM,NN,那么,那么1 1和和2 2有什么关系?请证明,将过有什么关系?请证明,将过OO点的直线旋点的直线旋转至图(转至图(2 2)()(3 3)的位置时,其他条件不变,那么)的位置时,其他条件不变,那么图(图(1 1)中的)中的1 1和和2 2的关系还成立吗的关系还成立吗?请证明。请证明。2ABCDMN12OABCDMN12ONMDCBA1O请同学们谈谈本节课的收获与体会请同学们谈谈本节课的收获与体会本节课你学到了什么?本节课你学到了什么?发现了什么?发现了什么?有什么收获?有什么收获?还存在什么没有解决的问题?还存在什么没有解决的问题?小小 结结2.三边对应相等的两个三角形全等三边对应相等的两个三角形全等(简写马(简写马“边边边边边边”或或“SSS”););1.知道三角形三条边的长度怎样画三角形;知道三角形三条边的长度怎样画三角形;3.初步学会理解证明的思路,初步学会理解证明的思路,应用应用“边边边边边边”证明两个三角形全等证明两个三角形全等.作业:作业:课本课本P15 习题习题11.2第第1、2题题课堂小结课堂小结1.1.边边边公理:有三边对应相等的两个三角形全等边边边公理:有三边对应相等的两个三角形全等 简写成简写成“边边边边边边”(SSSSSS)2.边边边公理的发现过程所用到的数学方法(包括画边边边公理的发现过程所用到的数学方法(包括画 图、猜想、分析、归纳等图、猜想、分析、归纳等.)3.边边边公理的应用中所用到的数学方法边边边公理的应用中所用到的数学方法:证明线段(或角相等)证明线段(或角相等)证明线段(或角)证明线段(或角)所在的两个三角形全等所在的两个三角形全等.转化转化1.说明两个三角形全等所需的条件应按说明两个三角形全等所需的条件应按对应边的顺序书对应边的顺序书写写.2.结论中所出现的边必须在所证明的两个三角形中结论中所出现的边必须在所证明的两个三角形中.用结论说明两个三角形全等需注意用结论说明两个三角形全等需注意 小明做了一个如图所小明做了一个如图所示的风筝,他想去验证示的风筝,他想去验证BACBAC与与DACDAC是否相等,是否相等,但手头却只有一把足够长但手头却只有一把足够长的尺子。你能帮助他想个的尺子。你能帮助他想个方法吗?说明你这样做的方法吗?说明你这样做的理由。理由。A AB BD DC C思思考考探索与思考探索与思考 小明有一块小明有一块“飞镖飞镖”,想知道,想知道B B和和C C是否相等,他没有量角器,只有刻度尺,是否相等,他没有量角器,只有刻度尺,你能帮小明想一个办法吗?你能帮小明想一个办法吗?说明你的做法的理由。说明你的做法的理由。CABD 取出若干根的木条,把它们分别做成三角形和四边取出若干根的木条,把它们分别做成三角形和四边形框架,并拉动它们。形框架,并拉动它们。你发现什么?你发现什么?你发现什么?你发现什么?三角形的大小和形状是固定不变的,而四边形三角形的大小和形状是固定不变的,而四边形的形状会改变。的形状会改变。只要三角形三边的长度确定了,这个三形的形状只要三角形三边的长度确定了,这个三形的形状和大小就确定,三角形的这个性质叫和大小就确定,三角形的这个性质叫 三角形三角形三角形三角形的稳定性。的稳定性。的稳定性。的稳定性。做一做做一做 四边形不具有稳定性,你能想出什么方法让它们的形状不发生改变吗?试一试试一试 已知三角形三条边分别是已知三角形三条边分别是4cm4cm,5cm5cm,7cm7cm,画画出这个三角形出这个三角形

    注意事项

    本文(全等三角形判定SSS.ppt)为本站会员(hyn****60)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开