磨料粒度对磨料流加工的影响规律研究,机械工程硕士论文.docx
磨料粒度对磨料流加工的影响规律研究,机械工程硕士论文摘 要 磨料流加工是利用改性高分子材料在稳定粘弹态下和磨粒混合成为半固体的流体磨料被挤压通过待加工外表到达抛光、去毛刺和倒角等目的,是光整加工技术中的新兴工艺。该工艺对窄缝、微孔、异形孔腔的抛光极具优势。由于磨料流加工技术的众多优点,关于磨料流技术的研究不断增加,但是由于影响磨料流加工效果的因素很多,如磨粒粒度、磨料粘度、加工温度、工件材料硬度等,使得对其加工机理的研究非常困难,获得的进展有限。 本文在应用研究和试验经过中发现磨料的粒度对磨料流加工效果影响很大,在加工经过中使用不同粒度的磨料工件外表质量会呈现出不同的加工极限,而且加工效率也会随磨料粒度发生变化。而以往其他学者对磨料流技术加工机理的研究经过中只建立一种加工模型,忽视磨粒粒度带来的影响,本文通过比照不同粒度的磨粒和工件初始外表形貌的尺寸关系,建立不同粒度磨粒的加工模型;华而不实大粒度磨粒在建立加工模型和分析加工机理时需要将工件外表视为平面,而小粒度磨粒在建立加工模型和分析加工机理时需要将工件外表视为有一定角度的斜面,在这里分析基础上,研究磨料粒度对磨料流技术加工经过中加工极限和加工效率的影响规律,以及设计不同粒度磨料交替使用的实验方案来突破传统实验方案的限制,到达更好的加工效果,为磨料流加工工艺的理论分析和实际生产中磨料粒度的选择提供新的思路。主要工作和结论归纳如下: 1研究影响磨料流技术加工效果的因素,分析流体磨料的流动特性。总结磨粒压痕深度、磨粒粒径对工件外表材料去除方式的影响规律,并分析磨粒对工件进行材料去除的条件。对外表粗糙度 Ra=1.97m 的不锈钢毛细管内壁外表进行测量,得到其微观形貌的实测图,做外表形貌曲线,通过其与不同粒度的磨粒进行基于实际尺寸的接触关系进行比照,将加工模型分为介观尺度下大粒度磨粒加工模型和微观尺度下小粒度磨粒加工模型,并分别对其进行受力分析,华而不实在分析大粒度磨粒的加工机理时将工件外表视为平面,分析小粒度磨粒的加工机理时将工件外表视为一定角度的斜面。 2在对不同粒度磨粒加工机理的理论分析基础上,布置不同粒度磨料的加工实验。对不同粒度磨料到达加工极限的实验情况进行总结,分析不同粒度磨料在加工经过中加工极限产生的原因,同时对不同粒度磨料在加工经过中的加工效率进行比照分析。 得出结论:大粒度磨料在每次加工经过中的材料去除量较大,加工效率高,但是有效加工次数较少,容易到达加工极限,出现加工过量的现象;小粒度磨料在每次加工经过中的材料去除量较小,加工效率较低,但是到达加工极限前的有效加工次数更多,能够获得更好的加工质量。 3为了获得更好的加工效果,在分析不同粒度磨料在磨料流技术加工经过中加工极限和加工效率变化规律的基础上,提出并布置了大粒度磨料和小粒度磨料交替使用的实验方案。经过实验结果的比照,发现新的实验方案能够获得更好的加工质量,同时能够提高加工效率,这也为实际生产中提高磨料流技术的加工效果提供了新的思路。 本文关键词语 : 磨料流加工;磨粒粒度;加工模型;加工机理;加工极限;加工效率。 ABSTRACT Abrasive Flow Machining is a new technology in finishing technology, which usesmodified polymer materials in stable viscoelastic state to mix with abrasive particles andbecomes semi-solid fluid abrasive, which is extruded through workpiece surfaces to achievethe purpose of polishing, deburring and chamfering. This process has great advantages forpolishing narrow slit, micro hole and irregular hole cavity. Due to the advantages of AbrasiveFlow Machining technology, the research on abrasive flow technology is increasing, but ,there are many factors that affect the effect of abrasive flow machining, such as abrasiveparticle size, abrasive viscosity, processing temperature, workpiece material hardness, so thatthe research on its processing mechanism is very difficult and the progress is limited. In the process of application research and test, it is found that the abrasive particle sizehas a great influence on the Abrasive Flow Machining effect. In the process of processing, thesurface quality of the abrasive workpiece with different particle size will show differentprocessing limit, and the processing efficiency will also change with the abrasive particle size. However, other scholars in the previous research on the processing mechanism of abrasiveflow clamp technology only established a processing model, ignoring the impact of abrasiveparticle size, by comparing the size relationship between different particle size and the initialsurface topography of the workpiece, it was found that different particle size of the abrasiveparticles to establish different processing models. The workpiece surface needs to be regardedas a plan when establishing the machining model and analyzing the machining mechanism oflarge-size abrasive particles, and the surface of the workpiece should be regarded as a planewith a certain inclination Angle when establishing the machining model and analyzing themachining mechanism of small particle size, on the basis of this analysis, the influence law ofabrasive particle size on processing limit and processing efficiency in Abrasive FlowMachining process is studied, and design a experiment scheme of different particle sizeabrasive alternating use to break through the limitation of the traditional experiment scheme,to achieve better processing effect, to provide a new idea for the theoretical analysis ofAbrasive Flow Machining processing technology and the choice of abrasive particle size inthe actual production. The main work and conclusions are summarized as follows: 1The factors influencing the machining effect of abrasive flow technology arestudied, and the flow characteristics of fluid abrasive are analyzed. The influence rules ofabrasive indentation depth and abrasive particle size on the workpiece surface material removal methods were summarized, and the conditions of abrasive material removal on theworkpiece were analyzed. The inner surface of stainless steel capillary with a surfaceroughness of Ra=1.97m was measured, and the measured microtopography was obtained,and the machining models were divided into large particle size machining model atmesoscopic scale and small particle size machining model at microscopic scale by comparingthe contact relationship with the abrasive particles of different sizes, and analyze the force onthem respectively, the workpiece surface is regarded as a plane when analyzing the processingmechanism of large-size abrasive particles, and the workpiece surface is regarded as ainclined plane with certain Angle when analyzing the processing mechanism of small-sizeabrasive particles. 2On the basis of theoretical analysis of processing mechanism of abrasive particleswith different particle sizes, processing experiments of abrasive materials with differentparticle sizes were arranged. The experiment of different grain-size abrasives to reach theprocessing limit is summarized and the causes of processing limit for different grain-sizeabrasives in the processing process are analyzed, while the processing efficiency of differentparticle size abrasives in the processing process is compared and analyzed. It is concluded thatthe material removal amount of large-size abrasive in each processing process is large and theprocessing efficiency is high, but the effective processing times are less, and it is easy to reachthe processing limit, and the phenomenon of excessive processing appears. The materialremoval amount of small-size abrasive in each processing process is small, and the processingefficiency is low, but the effective processing times before reaching the processing limit aremore, which can obtain better processing quality. 3In order to obtain better processing effect, based on the analysis of the change ruleof processing limit and processing efficiency of different grain-size abrasives in the process ofAbrasive Flow Machining technology, an experimental scheme of using large grain-sizeabrasives and small grain-size abrasives alternatively was proposed and arranged. Throughthe comparison of the experimental results, it is found that the new experimental scheme canobtain better processing quality and improve the processing efficiency, which also provides anew idea for improving the processing effect of Abrasive Flow Machining technology in theactual production. Keywords : Abrasive Flow Machining; grinding grain size; machining model; processingmechanism; processing limit; processing efficiency。 文章为硕士论文,如需全文请点击底部下载全文链接】 1.2、磨料流加工技术概述. 1.2.1、磨料流加工技术 1.2.2、影响磨料 流加工效果的因素. 1.3、磨料流技术加工机理的研究现在状况. 1.3.1、国外的研 究进展. 1.3.2、国内 的研究进展 1.4、主要研究内容 1.5、本章 第2章 不同粒度磨 粒加工机理的研究 2.1、 流体磨料在孔道内的流动状态分析. 2.1.1、 入口区速度压力变化情况 2.1.2、出口区速度压力变化情况 2.1.3、全展流区 速度压力变化情况 2.2、磨粒粒度对磨料流加工模型的影响. 2.2.1、 工件外表形貌图 2.2.2 、不同粒度磨粒的加工模型 2.3、磨粒粒度对磨料流加工机理的影响 2.3.1、 材料去除方式 2.3.2 、不同粒度磨粒的受力分析 2.4、本章总结. 第3章 磨料粒度对加工 极限的影响规律研究. 3.1、不同粒度磨料的实验准备. 3.2 、小粒度磨料对工件外表质量加工极限的影响规律 3.2.1、 小粒度磨料加工极限实验 3.3、大粒度磨料对工件外表质量加工极限的影响规律 3.3.1、 大粒度磨料加工极限实验 3.4、本章小结 第4章 磨料粒度对加工效率的影响规律研究 4.1、小粒度磨料对加工效率的影响规律研究 4.2、大粒度磨料对加工效率的影响规律研究. 4.2、一样条件下不同粒度磨料加工效率比照分析 4.3、本章小结 第5章 不同粒度磨料交 替使用的加工效果研究 5.1、交替使用不同粒度磨料的实验方案设计 5.2、不同实验方案加工效果比照分析 5.3、 本章小结 第6章 结论 由于磨料流加工技术在加工经过中使用的流体磨料既具有流体的特性,又能够利用磨粒进行微量切削,使得磨料流加工技术在加工传统精致细密加工方式方法难以发挥的微孔、复杂孔道、孔腔等构造时具有独特的优势,其应用范围越来越广泛,是一种越来越重要的新型光整加工技术。但是由于影响磨料流加工效果的因素有很多,如加工压力、加工温度、夹具形状、加工次数、磨料粒度等,所以关于磨料流加工技术的加工机理研究固然一直在进行,获得了一定的成果,但进展有限。在实验分析和文献研究经过中,发现磨粒粒度对磨料流加工技术的加工效果有很大的影响,因而本文以磨料粒度为出发点,分析了磨粒粒度对磨粒加工模型、磨粒受力分析的影响;在这里基础上,对不同粒度磨料在加工经过中的加工极限以及加工效率等进行分析和实验验证,进而设计新的加工方案以获得更好的加工效果并为实际生产中磨粒粒度的选择提供指导,本文主要工作和结论总结如下: 1在磨料流加工研究经过中,需要考虑磨粒粒度和工件微观形貌的尺寸比照关系,在建立加工模型时不再如以往只建立一种加工模型而忽略实际加工情况,建立大粒度磨粒和小粒度磨粒两种加工模型更接近实际加工情形,也为磨料流技术加工机理的分析提供了新的思路。 2在对不同粒度磨粒进行加工机理分析的基础上,研究磨料粒度对磨料流加工效果的影响,十分是对加工经过中加工极限和加工效率的影响,能够得到:大粒度磨粒会优先以一定切削深度去除工件外表微观不平的“山峰 ,大粒度磨料去除量大,有更高层次的加工效率,但是由于工件外表微观不平尺寸较小,使得大粒度磨料在有效加工次数较少时就会到达其加工极限。小粒度磨粒会沿着工件外表轮廓对工件进行切削作用,其切削深度和受的正压力较小,每次对工件外表的切削量较少,加工效率也就相对较小,出现加工极限时需要的加工次数更多,十分是在一样初始外表粗糙度的情况下,比照大粒度磨料和小粒度磨料的加工效率能够发现,大粒度磨料的加工效率会更高层次。 3基于大粒度磨料和小粒度磨料在加工经过中的优缺点,提出交替使用大粒度磨料和小粒度磨料对工件进行加工的实验方案,结果表示清楚交替使用不同粒度磨料对工件进行加工能够突破原有实验方案加工经过中的加工极限,提高加工效率,得到更好的加工效果;可以以减少磨料的使用次数,既能节省加工时间也能减少磨料的损耗。 以下为参考文献 1 David E. Siwert. Edge and Surface Finishing with Abrasive FlowJ. Manufacturing Enginccring.December 1975 (75)6: 37-40. . 2 Flowing abrasive deburr partsJ . American Machinist. March 18, 1974: 53-55. 3 Larry Rhoades. Abrasive Flow Machining with Not -So Silly PuttyJ. Mctal Finishing. July 1987:27-29. 4 L. J. Rhoades. Abrasive flow m achiningJ. Manuf acturing Enginccring. Nov.1988: 75-78. 5 Larry Rhoades. Abrasive flow machining: a casc studyJ. Joumal of Materi als Proces sing Technology.1991 (28): 107-1 16. 6 熊英.磨料流加工技术的发展P.航空科学技术,19952): 16-18. 7 武利生,李元宗.磨料流加工研究进展D.金刚石与磨料磨具工程, 2005(1): 69-74. 8 高航,吴鸣宇,付有志,等流体磨粒光整加工理论与技术的发展J. 机械工程学报, 2021, 51(7) : 174 187. 9 施凯博,孙玉利,余泽,等.钛合金磨料流光整加工外表完好性研究D.外表技术, 2022, 48( I0):80-85, 138. 10 Cherian J, Issac M. Effect of proccess paramcters on wear performance in Abrasive FlowMachiningJ. Appliad Mcchanics and Materials, 2021, 766-767: 66 1-667. 11 Chcrian J, Issac J M. Fatiguc performance in Abrasive Flow MachiningJ. Applicd Mcchanics andMaterials,20 14,592 -594:354 362. 12陈云,耿子瑜,李代刚,等磨料流研磨处理对硬质合金刀具基体外表和涂层结合性能的影响.工具技术,2021.,52(4): 92-95. 13赵嘉,方亮,孙琨,等.磨料流研抛经过中介质黏温特性对金属磨损性能的影响J.摩擦学学报2008,282):173-177. 14 Uhlmann E, Mihotovic V, Cocncn A. Modelling the abrasive flow machining process on advancad ceramic maten alsJ. Joumal of Mateni als Procssing Tech, 2018 , 209(20): 6062 -6066. 15薛吉.空分压缩机组增压机叶轮流道加工抛光工艺研究J.科技创新与应用,2021,(9):23-24. 16 D. Sudhakara; S. Surcsh, B. Vinod .E xperimental. Study on Abrasive Flow Machining (AFM): New Approach for Investigation on Nano-SiC in the Improverment of Matcrial Removal and Surface Fini shingJ .Jourmal of Bio- and TriboCorrosion,2020,Vol.6(1). 17 闫波,张方东,黄铁军,等.基于磨料流加工技术叶片泵转子去毛刺试验研究机床与液压,2020, 48(4): 67-70. 18 宋桂珍,程建明,董志国,等.磨料流加工在塑料成型模具制造中的应用J.模具制造, 2018(10) : 19-22. 19辛固,郑清平,田晔,等.柴油机喷油器构造参数与磨料流加工效果关联的研究J柴油机,2020, 42(1):41-45, 49. . 20 王鹏里,董志国,轧刚,等软性磨料流对喷油嘴微孔锥度的加工成形研究J. 工具技术,2021,52(4): 36-40. 21 刘薇娜,王尹琛,张英芝,等.磨料体积分数对喷油嘴喷孔加工影响分析.重庆理工大学学报(自然科学), 2021,(1):81-85. 22 T R. Loveless, R. E. Williams, K. P. Rajurkar. A study of the efect of abrasive-flow finishing on variou smachincd surfaccsJ. Jourmal of Materials Processing Tcchnology, 1994 (47): 133-151. 23 Qiuyan Wang; Moiz Sabbir Vohra; Shuowei Bai; ct al. ultrasonic -as sisted abrasive flow finishing and its fundamental performance in A16061 machiningJ.The Intcrnational Joumal of Advanced Manufacturing Technology, 2021, 113: 473-481. 24 赵轩达,祝锡晶,庞吴斐.超声辅助磨料流加工的材料去除机理及参数研究J. 热加工工艺,2021, 46(6): 163-167. 25胡敬磊、基于离散元法的磨料流抛光及材料去除机理研究D.长春:长春理工大学,2021. 26周曾炜.磨料流研抛微小孔壁面磨损机理离散元数值分析D.长春:长春理工大学2021. 27刘慧,宋桂珍,李金羽基于有限元分析的微型磨料流机床研究J.组合机床与自动化加工技术,2021, (1): 122- 124, 128. 28 赵培锋.基于有限元方式方法的磨料流加工数值模拟研究D. 太原:太原理工大学, 2018. 29 Davics P. J, Fletcher A. J. The asscssment of the rhcological characteristics of various polyborosiloxanc/ grit mixtures as utilized in the abrasive flow machining proccssJ. Proeedings of the In sitution of Mcchanical Engineers, Part C: Journal of Mcchanical Engineering Sciencc, 1995,209(6): 409-418. 30 A. J. Fletcher, A. Fiorav anti. Polishing and honing process: an investigetion of the thermalpropertics of the mixtrucs of polyborosilox anc and silicon carbide abrasiveJ. Proccedings of the Institution of Mechanical Engincers, 1996(2 10): 254265. 31 R. E. Williams, Acoustic K. P. Rajurkar. Stochastic Modeling and Analysis of Abrasive Flow machining. Tran sactionsof the ASME, 1992(114): 74-81. 32 Rajcndra Kumar Jain, Vijay Kumar Jain. Simulation of surf ace generated in abrasive flow machining process. Robotics and Computer Integrated Manufactuning, 1999(1 ): 403-412. 33 Schijpal Singh, H. s. Shan. Development of magncto abrasive flow machining process J. Internation al Journal of M achinc Tools M anufacture, 2002(42 ): 953-959. 34 Schijpal sing, H. S. Shan, EKumar. Wear bchavior of matcni als in magnctically assi sted abrasive flow machiningJ. Joumal of Mateni als processing Technology, 2002(128): 155-161 . 35 Rajcndra V. K. Jain. Spccific cncrgy and tempcrature dctcrminnation in abrasive flow machining process. Intcrm ation al Joum al of Maachinc Tools Manufacturc, 2001(41): 1689-1704. 36 Rajcndra K. Jain, vijay K. Jain, P. M. Dixit. Modeling of matcrial removal and surfacc roughness in abrasive flow machi ng process. International Joumal of M achine Tools Manufacture. 39(1 999 ): .242-248. 37 R. K. Jain, P. K. Kal ar. Moldelling of abrasive flow machining process: a ncural nctwork approachJ .Wear, 231(1999): 242- -248.