欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    三角形五心性质概念整理(超全)课件doc.docx

    • 资源ID:71040488       资源大小:16.68KB        全文页数:9页
    • 资源格式: DOCX        下载积分:9.8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9.8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角形五心性质概念整理(超全)课件doc.docx

    三角形五心性质概念整理(超全)课件.doc1、重心到顶点的距离与重心到对边中点的距离之比为2:1。2、重心和三角形3个顶点组成的3个三角形面积相等。3、重心到三角形3个顶点距离平方的和最小。证实方法:设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3)平面上任意一点为x,y则该点到三顶点距离平方和为:(x1-x)1-y)2-x)2-y)3-x)3-y)2+(y2+(x2+(y2+(x2+(y2+(y2+(x2+(y2+(x2+(y2=3x2-2x(x2-2x(x1+x2+x3)+3y2-2y(y1+y2+y3)+x12+x2+x2+y2+y2+y2+x2+x2+y2+y2+y231232=3x-1/3*(x1+x2+x3)2+3y-1/3*(y1+y2+y3)2+x2+x2+x2+y2+y2+y2-1/3(x2-1/3(y1231232+x2+x2+x2+y2+y2+y2-1/3(x2-1/3(y1+x2+x3)1+y2+y3)2显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3重心坐标时上式获得最小值x12+x2+x2+y2+y2+y2-1/3(x2+x2+x2+y2+y2+y2-1/3(x231231+x2+x3)1+y2+y3)2-1/3(y2-1/3(y2最终得出结论。4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其坐标为(X1+X2+X3)/3,(Y1+Y2+Y3)/3;空间直角坐标系横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:Z1+Z2+Z3/35、三角形内到三边距离之积最大的点。6、在ABC中,若MA向量+MB向量+MC向量=0向量,则M点为ABC的重心,反之也成立。7、设ABC重心为G点,所在平面有一点O,则向量OG=1/3向量OA+向量OB+向量OC设ABC的内切圆为I(r),A、B、C的对边分别为a、b、c,p=(a+b+c)/21、三角形的内心到三边的距离相等,都等于内切圆半径r2、BIC=90°+BAC/23、在RtABC中,A=90°,三角形内切圆切BC于D,则SABC=B×DCD4、点O是平面ABC上任意一点,点I是ABC内心的充要条件是:向量OI=a(向量OA)+b(向量OB)+c(向量OC)/(a+b+c)5、在ABC中,若三个顶点分别是A(x1,y1),B(x2,y2),C(x3,y3),那么ABC内心I的坐标是:(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)6、(欧拉定理)ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr7、ABC中:a,b,c分别为三边,S为三角形面积,则内切圆半径r=2S/(a+b+c)8、双曲线上任一支上一点与两交点组成的三角形的内心在实轴的射影为对应支的顶点。9、ABC中,内切圆分别与AB,BC,CA相切于P,Q,R,则AP=AR=(b+c-a)/2,BP=BQ=(a+c-b)/2,CR=CQ=(b+a-c)/2,r=(b+c-a)tan(A/2)/2。10、三角形内角平分线定理:ABC中,I为内心,BAC、ABC、ACB的内角平分线分别交BC、AC、AB于Q、R、P,则BQ/QC=c/b,BP/PA=a/b,CR/RA=a/c。内切圆的半径1在RtABC中,C=90°,r=(a+b-c)/22在RtABC中,C=90°,r=ab/(a+b+c)3任意ABC中r=2*SABC/CABCC为周长外心设ABC的外接圆为G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2性质1:1锐角三角形的外心在三角形内;2直角三角形的外心在斜边上,与斜边中点重合;3钝角三角形的外心在三角形外.4等边三角形外心与内心为同一点。性质2:BGC=2A,或BGC=2(180°-A).性质3:GAC+B=90°证实:如下图延长AG与圆交与PB、C下面的那个点A、C、B、P四点共圆P=BP+GAC=9°0GAC+B=90°性质4:点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是ABC外心的充要条件是:1向量PG=(tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC).或2向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC.性质5:三角形三条边的垂直平分线交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。性质6:点G是平面ABC上一点,那么点G是ABC外心的充要条件(向量GA+向量GB)·向量AB=(向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=0.三角形外接圆半径:R=abc/4SABC垂心1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.2、三角形的垂心是它垂足三角形的内心;或者讲,三角形的内心是它旁心三角形的垂心;3、垂心H关于三边的对称点,均在ABC的外接圆上。4、ABC中,有六组四点共圆,有三组(每组四个)类似的直角三角形,且AH·HD=BH·HE=CH·HF。5、H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。6、ABC,ABH,BCH,ACH的外接圆是等圆。7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。9、设O,H分别为ABC的外心和垂心,则BAO=HAC,ABH=OBC,BCO=HCA。10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。12、西姆松(Simson)定理西姆松线从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。13、设锐角ABC内有一点P,那么P是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC。*CA向量PA*向量PB=向量PB*向量PC=向量PC*向量PAABC为三角形三个顶点,P为垂心旁心性质1:三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。性质2:旁心到三角形三边的距离相等。性质3:三角形有三个旁切圆,三个旁心。旁心一定在三角形外。性质4:直角三角形斜边上的旁切圆的半径等于三角形周长的一半。

    注意事项

    本文(三角形五心性质概念整理(超全)课件doc.docx)为本站会员(安***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开