欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019版高中数学 第四章 4.2 用数学归纳法证明不等式举例试题 新人教A版选修4-5.doc

    • 资源ID:710470       资源大小:623.38KB        全文页数:6页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019版高中数学 第四章 4.2 用数学归纳法证明不等式举例试题 新人教A版选修4-5.doc

    1二二 用数学归纳法证明不等式举例用数学归纳法证明不等式举例课后篇巩固探究巩固探究1 1.用数学归纳法证明 1+1)时,第一步是证下述哪个不等式成立( )1 2+1 31 2 - 1A.1-1,x0,则下列不等式正确的是( )A.(1+x)3 - 1 2A.1B.2C.3D.4解析当n=1 时,左边=1,右边=10=1,1>1,不成立;当n=2 时,左边=2+1=3,右边=,3>1112+ 2 221 2=2,成立;当n=3 时,左边=3+3+1=7,右边=31=3,7>3,成立.213+ 2 3+ 3 32所以n的最小值n0为 2.答案 B4 4.导学号 26394067 某同学回答“用数学归纳法证明时,f(2k+1)比f(2k)多的项为 .1 2+1 31 2解析f(2k+1)-f(2k)=1+.1 2+1 312 + 1(1 +1 2+1 3+ +12)=12+ 1+12+ 212 + 1答案+12+ 1+12+ 212 + 16 6.已知x>0,观察下列几个不等式:x+2;x+3;x+4;x+5归纳猜想一般的不等式1 422732564为 . 答案x+n+1(n为正整数)37 7.用数学归纳法证明(a,b是非负实数,nN N+)时,假设当n=k时不等式+ 2( + 2)(*)成立,再推证当n=k+1 时不等式也成立的关键是将(*)式两边同乘 .+ 2( + 2)解析对比k与k+1 时的结论可知,两边只需同乘即可. + 2答案 + 28 8.用数学归纳法证明 1+ 24n都成立,求正整数a的最大值,并证明你的结论.解取n=1,则有成立,1 2+1 3+1 4> 24所以,因此a 24即正整数a的最大值为 25.以下用数学归纳法证明.4+对一切正整数n都成立.1 + 1+1 + 2+1 + 31 3 + 1>25 24(1)当n=1 时不等式成立.(2)假设当n=k(k1)时不等式成立,即+,1 + 1+1 + 2+1 + 31 3 + 1>25 24当n=k+1 时,+1 ( + 1) + 1+1 ( + 1) + 2+1 ( + 1) + 31 3( + 1) + 1=.(1 + 1+1 + 2+1 + 3+ +1 3 + 1)+1 3 + 2+1 3 + 3+1 3 + 41 + 1>25 24+1 3 + 2+1 3 + 4-2 3( + 1)因为,1 3 + 2+1 3 + 4=6( + 1)92+ 18 + 8>6( + 1)92+ 18 + 9=6( + 1)9( + 1)2=2 3( + 1)所以>0,1 3 + 2+1 3 + 42 3( + 1)于是+,1 ( + 1) + 1+1 ( + 1) + 2+1 ( + 1) + 31 3( + 1) + 1>25 24即当n=k+1 时不等式成立.由(1)(2)知,对一切正整数n,都有+,且正整数a的最大1 + 1+1 + 2+1 + 31 3 + 1>25 24值等于 25.1010.导学号 26394069 已知数列an满足:a1=,且an=(n2,nN N+).3 23 - 12 - 1+ - 1(1)求数列an的通项公式;(2)求证对一切正整数n,不等式a1a2an1 2显然,左端每个因式皆为正数,先证明对nN N+,有××(1 -1 3)×(1 -132)(1 -13)1-.(1 3+132+ +13)下面用数学归纳法证明式:当n=1 时,显然式成立,假设当n=k(k1)时,式成立,即××(1 -1 3)×(1 -132)(1 -13)1-.(1 3+132+ +13)当n=k+1 时,××(1 -1 3)×(1 -132)(1 -13)×(1 -13 + 1)61 -(1 3+132+ +13)(1 -13 + 1)=1-(1 3+132+ +13)13 + 1+13 + 1·(13+132+ +13)>1-.(1 3+132+ +13+13 + 1)即当n=k+1 时,式也成立.故对一切nN N+,式都成立.利用,得(1 -1 3)×(1 -132)(1 -13)1-(1 3+132+ +13)=1-1 31 -(1 3)1 -1 3=1-.1 21 -(1 3)=1 2+1 2(1 3)>1 2故原不等式成立.

    注意事项

    本文(2019版高中数学 第四章 4.2 用数学归纳法证明不等式举例试题 新人教A版选修4-5.doc)为本站会员(随风)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开