欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019高中化学 共价键 分子的立体结构(基础)知识讲解学案 新人教版选修3.doc

    • 资源ID:713371       资源大小:261.89KB        全文页数:11页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高中化学 共价键 分子的立体结构(基础)知识讲解学案 新人教版选修3.doc

    1共价键共价键 分子的立体结构分子的立体结构 【学习目标学习目标】 1、认识共价键的主要类型 键和 键;会用电子式表示共价键的形成;理解共价键的形成条件及其本 质; 2、认识键能、键长、键角等概念,能用它们说明简单分子的某些性质;认识等电子原理,了解其应用。 3、认识共价分子立体结构的多样性和复杂性;初步认识价层电子对互斥模型,能用 VSEPR 模型预测简单 分子或离子的立体结构; 4、认识杂化轨道理论的要点,进一步了解有机化合物中碳的成键特征,能根据杂化轨道理论判断简单分 子或离子的构型,培养分析、归纳、综合的能力和空间想象能力;了解配位键、配位化合物的概念及表示方 法。【要点梳理要点梳理】 【高清课堂:高清课堂:分子结构与性质#分子结构与性质】要点一:共价键 1、共价键的实质:共用电子对与原子核之间的静电作用使原子结合起来 说明:原子之间通过核间高概率出现的共用电子对所产生的强烈相互作用2、共价键形成过程的表示方法 说明:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素 符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式例如: 说明:注意书写分子的电子式和分子形成过程的电子式的区别。3、共价键的特征 饱和性:是指每个原子成键的总数或以单键连接的原子数目是一定的,因为共价键是有原子轨道重叠 和共用电子形成的,而每个原子能提供的轨道和成单电子数目是一定的。 例如:当两个 H 原子结合成 H2分子后,不可能再结合第三个 H 原子形成“H3分子” 。同样,甲烷的化学式 是 CH4,说明碳原子最多能与四个氢原子结合。这些事实说明,形成共价键时,每个原子有一个最大的成键数, 每个原子能结合其他原子的数目不是任意的。 方向性:是指一个原子与周围原子形成的共价键具有一定的方向,角度。这是由于原子轨道(S 轨道除 外)有一定的方向性,它和相邻原子的轨道重叠要满足最大重叠原理。 说明:共价键的方向性使共价分子都具有一定的空间构型。例如,在硫原子和氢原子结合生成 H2S 分子时, 因为硫原子的最外层两个不成对的 3p 电子的电子云互成直角,氢原子的 1s 电子云要沿着直角的方向跟 3p 电 子云重叠,这样 H2S 分子中两个共价键的夹角应接近 90 度。4、共价键的类型(1) 键:(以“头碰头”重叠形式)a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键的图形不变,轴对称图形。b、种类:s-s 键 s-p 键 p-p 键(2) 键:(以“肩并肩”重叠形式)特征:每个 键的电子云有两块组成,分别位于有两原子核构成平面的两侧,如果以它们之间包含 原子核的平面为镜面,它们互为镜像,这种特征称为镜像对称。说明:a、 键比 键强度大, 键易断裂。例如:烯烃比烷烃活泼。b、只有当两原子之间形成重键的时候才会出现 键;原子间多重健中只有一个 键其它均为 键。5、共价键的形成条件一般非金属元素的原子之间通过共价键结合。如非金属气态氢化物、水、酸、非金属氧化物等物质中的元素都以共价键结合。共价键存在于非金属单质、共价化合物中,也可存在于离子化合物中(例如,氢氧化钠、过氧化钠、 硫酸钾等) 。说明:2电负性相同或相差很小的非金属元素原子之间形成共价键。一般成键原子有未成对电子(自旋相反)。成键原子的原子轨道在空间重叠。【高清课堂:高清课堂:分子结构与性质#键参数】要点二:键参数 、键能:气态基态原子形成mol 化学键所释放出的最低能量。通常取正值。单位:kJ/mol说明:键能越大,形成化学键放出的能量越大,化学键越稳定;含有该化学键的分子越稳定。例如:氢化物的稳定性 HFHClHBrHI、键长:形成共价键的两原子间的核间距。单位:pm(pm10-12m)说明:键长越短,共价键越牢固,形成的物质越稳定3、键角:多原子分子中的两个共价键之间的夹角。例如:CO2 结构为,键角为 180°;为直线形分子。H2O 键角 105°;形CH4 键角 109°28;正四面体注意:键能、键长、键角是共价键的三个参数键能、键长决定了共价键的稳定性;键长、键角决定了分子的空间构型。 要点诠释:要点诠释:共价键强弱的判断规律1、电子云的重叠程度不同键的强弱不同。例如: 键比 键强度大。2、原子间共用电子对越多,共价键越强。例如:碳碳键的键能乙烷为 348 kJ/mol,乙烯是615 kJ/mol,乙炔是 837 kJ/mol。3、成键原子半径之和越小,共价键越强。例如:已知 r(F)r(Cl)r(Br)r(I),所以有下列共价 键的大小关系:HFHClHBrHI要点三:等电子原理等电子体概念:原子数相同,价电子数也相同的微粒(等电子体结构相似、性质相似) 。如:CO 和 N2,CH4和 NH4+ 要点四、常见多原子分子的立体结构:CH4 NH3 CH2O CO2 H2O 原子数目化学式分子结构键角中心原子CO2 直线形180°无孤对电子 3H2OV 形105°有孤对电子CH2O平面三角形120°无孤对电子 4NH3 三角锥形107°有孤对电子5CH4 正四面体形109°28无孤对电子【小结】同为三原子分子或四原子分子,分子的空间构型不同。所以多原子分子的立体结构不但与所连 原子数目有关,还与其他因素(比如中心原子是否有孤对电子及孤对电子的数目)有关【高清课堂:高清课堂:分子结构与性质#价层电子对互斥模型】要点五、价层电子对互斥模型: 用中心原子是否有孤对电子及孤对电子的数目,预测分子的立体结构 价层电子对互斥模型认为分子的立体结构是由于分子中的价电子对(成键电子对和孤对电子对)相互排 斥的结果。中心原子价层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何 构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型3这种模型把分子分为两类: 1、中心原子上的价电子都用于形成共价键(中心原子无孤对电子) 中心原子无孤对电子,分子中存在成键电子对与成键电子对间的相互排斥,且作用力相同,分子的空间 构型以中心原子为中心呈对称分布。如 CO2、CH2O、CH4、HCN 等分子。它们的立体结构可用中心原子周围的原 子数来预测:ABn立体结构范例n=2直线形CO2 n=3平面三角形CH2On=4正四面体形CH4 2、中心原子上有孤对电子(未用于形成共价键的电子对)的分子。 中心原子上有孤对电子,分子中存在成键电子对与成键电子对间的相互排斥、成键电子对与孤对电子对 间的相互排斥、孤对电子对与孤对电子对间的相互排斥。孤对电子要占据中心原子周围的空间,并参与互相 排斥,使分子呈现不同的立体构型 如 H2O 和 NH3,中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥,中心原子周围的 键+孤对电子数=4,所以 NH3与 H2O 的 VSEPR 理想模型都是四面体形。因而 H2O 分子呈 V 型,NH3分子呈三角 锥形。 【小结】电子对的空间构型(VSEPR 理想模型)与分子的空间构型存在差异的原因是由于孤对电子没有参 与成键,且孤对电子对比成键电子对更靠近原子核,它对相邻成键电子对的排斥作用较大,要使电子对相互排 斥最小,那么 H2O 、NH3 、CH4分子相应的键角必然逐渐变大。 要点诠释:要点诠释:价层电子对互斥模型小结 1、同为三原子分子或四原子分子,其分子空间构型不同,是由于分子中的成键电子对及中心原子上的孤 对电子对相互排斥,结果趋向尽可能彼此远离,以减小斥力。 排斥力:孤对电子对与孤对电子对孤对电子对与成键电子对成键电子对与成键电子对 例如:H2O 和 NH3中心原子上分别有 2 对和 1 对孤对电子,跟中心原子周围的 键加起来都是 4,它们相 互排斥形成四面体。由于分子的中心原子上未成键的孤对电子对对成键电子对之间的排斥力较强,所以使 H2O 分子中 2 个 OH 键和 NH3分子中 3 个 NH 键的空间分布发生一点变化,它们的键角从 109°28分别被压缩 到 105°和 107°。 2、应用 VSEPR 理论判断分子或离子的构型 对于一个 ABn型的共价型分子,中心原子 A 周围电子对排布的几何形状,主要取决于中心原子 A 的价电子 层中的电子对数(成键电子对数+孤对电子数) ,这些电子对的位置倾向于分离得尽可能远,使它们之间的斥 力最小。根据中心原子的孤对电子对的数目及中心原子结合的原子的数目确定。 若中心原子周围的原子数与孤对电子对数之和分别为 2、3、4,则 VSEPR 理想模型(注:与分子的立体结 构不同)分别是直线形、平面形、四面体形,由于孤对电子对成键电子的斥力影响较大,所以含有孤对电子 对的分子中键角比理想模型的键角要小一些。 例如:NH3与 H2O 的 VSEPR 理想模型都是四面体形(109°28) ,但分子的立体结构分别是三角锥形 (107°) 、V 形(105°)4【高清课堂:高清课堂:分子结构与性质#杂化轨道理论】要点六、杂化轨道理论: 能量相近的原子轨道重新组合 1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这 个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。特点:杂化前后轨道数目不变。杂化后轨道伸展方向,形状发生改变。2、甲烷分子的杂化轨道的形成:(sp3 杂化)甲烷分子的立体构型:空间正四面体,分子中的 CH 键是等同的,键角是 109°28 中心原子价电子构型 C:2s22p2 碳原子的 4 个价层原子轨道是 3 个相互垂直的 2p 轨道和 1 个球形的 2s 轨道,用它跟 4 个氢原子的 1s 原子轨道重叠,不可能得到四面体构型的甲烷分子。鲍林提出杂化轨道理论:形成甲烷分子时,中心原子碳的 2s 和 2px、2py、2pz四条原子轨道发生混杂,形成一组新的轨道, 即四个相同的 sp3杂化轨道,夹角 109°28。这些 sp3杂化轨道不同于 s 轨道,也不同于 p 轨道。当碳原子 跟 4 个氢原子结合时,碳原子以 4 个 sp3杂化轨道分别与 4 个氢原子的 1s 轨道重叠,形成 4 个 CH 键,因 此呈正四面体的分子构型。3、其他形式的杂化:根据参与杂化的 s 轨道与 p 轨道的数目,除了有 sp3杂化轨道外,还有 sp2 杂化和 sp 杂化,sp2 杂 化轨道表示由一个 s 轨道与两个 p 轨道杂化形成的,sp 杂化轨道表示由一个 s 轨道与一个 p 轨道杂化形成的碳原子的 sp2 杂化(以乙烯为例)5乙烯的中心原子 C 在轨道杂化时,有 1 个 p 轨道未参与杂化,只是的s 轨道与 2 个p 轨道发生 杂化,形成 3 个相同的 sp2杂化轨道,sp2杂化轨道分别指向平面三角形的三个顶点,杂化轨道间夹角为 120°。杂化轨道与 2 个 H 原子和另外一个 C 原子形成 2 个 CH 键和 1 个 CC 键,未杂化 p 轨道垂直于 sp2杂化轨道所在平面,与另外的 C 原子形成 CC p 键。碳原子的 sp 杂化(以乙炔为例)乙炔的中心原子 C 在轨道杂化时,有 2 个 p 轨道未参与杂化,只是的s 与 1 个p 轨道发生杂化, 形成 2 个相同的 sp 杂化轨道,杂化轨道间夹角为 180°。杂化轨道与 1 个 H 原子和另外一个 C 原子形成 1 个 CH 键和 1 个 CC 键,未杂化 2 个 p 轨道垂直于 sp 杂化轨道所在平面,与另外的 C 原子形成 2 个 CC p 键。 【小结】杂化轨道在角度分布上比单纯的 s 或 p 轨道在某一方向上更集中,从而使它与其它原子的原子 轨道重叠的程度更大,形成的共价键更牢固。 要点诠释:要点诠释:杂化轨道与分子的立体结构 1、判断杂化轨道的数目和杂化方式中心原子的孤对电子对数与相连的其他原子数之和,就是杂化轨道数。例如:NH3中心原子 N 上有一对孤对电子,所以杂化轨道数为 1+3=4,即 N 原子采用 sp3杂化;BeCl2中心原子 Be 上没有孤对电子,所以杂化轨道数为 0+2=2,即 Be 原子采用 sp 杂化;H2O 中心原子 O 上有 2 对孤对电子,所以杂化轨道数为 2+2=4,即 O 原子采用 sp3杂化 2、分子的立体结构三种杂化轨道的轨道形状,sp 杂化夹角为 180°的直线型杂化轨道,例如 BeCl2、C2H2;sp2 杂化轨 道 为 120°的平面三角形,例如 BF3、C2H4;sp3杂化轨道为 109°28的正四面体构型,例如 CH4、CCl4中心原子孤对 电子数化学式杂化轨道数杂化轨道类型分子结构CH4 0+4sp3 正四面体形C2H4 0+3sp2 平面三角形BF3 0+3sp2 平面三角形CH2O0+3sp2 平面三角形C2H2 0+2sp直线形0CO2 0+2sp直线形1SO2 1+2sp2 V 形2H2O2+2sp3 V 形3、微粒的空间构型小结 (1)、直线形:ClBeCl、OCO、CS2、C2H2等,中心原子的电子云以 sp 杂化成键。 (2)、V 形:H2O、H2S、NH2-是中学比较常见的,中心原子周围有四对电子,电子对的构型必然是四面体形, 这样微粒的空间构型就是 V 形了;SO2、O3这些是中学中不常见的,中心原子均是以 sp2杂化的形式成键的。 (3)、三角锥形:NH3、NF3、H3O+、PCl3等,中心原子都有 1 对孤对电子,以 sp3杂化成键,电子对的构型6为四面体形,微粒构型为三角锥形。 (4)、平面三角形:BF3,CH3+,中心原子以 sp2杂化形式成键,中心原子周围的电子对数目为 3,所以电 子对的空间构型是平面三角形,这样微粒的空间构型就是平面三角形,键角为 120° (5)、四面体形:、正四面体形:P4(是空心正四面体,有六条化学键,键角为 60°) 、CH4、CCl4、NH4+、 (是顶 点原子与中心原子成有中心的正四面体,中心原子一定以 sp3杂化成键,键角一定是 109°28)、四面体:与正四面体 CH4相似,只是顶点的原子有不同,但是属于一类,如:CH3Cl、CH2Cl2、CHCl3等。键角与 109°28相近) (6)、三角双锥:PCl5 (7)、正八面体:SF6、PCl6-等 (8)、某些分子得到质子后的构型的变化:A、H2O 得到一个 H+成 H3O+,构型由 V 形变成三角锥形B、NH3得到一个 H+成 NH4+,构型有三角锥形成正四面体形C、PCl5失去一个 Cl-,构型由三角双锥成正四面体D、PCl5得到一个 Cl-成 PCl6-,构型由三角双锥成正八面体【高清课堂:高清课堂:分子结构与性质#配合物理论】要点七、配合物理论简介 1、配位键概念:由一个原子单方向提供共用电子对给另一原子共用所形成的共价键。CuSO4 CuCl2·2H2OCuBr2 NaClK2SO4 KBr固体颜色白色绿色深褐色白色白色白色溶液颜色天蓝色天蓝色天蓝色无色无色无色前三种溶液呈天蓝色原因就是 Cu2+在水溶液中与水分子通过配位键结合 成四水合铜离子。其中 Cu2+为接受电子对的一方,H2O 为提供电子对的一方。表示方法A B电子对给予体 电子对接受体形成条件:其中一个原子必须提供孤对电子。另一原子必须有接受孤对电子的轨道。常见的含有配位键的分子或离子的形成过程:H3O+ NH4+ 注意:在 NH4+中,虽然有一个 NH 键形成过程与其它 3 个 NH 键形成过程不同,但是一旦形成之 后,4 个共价键就完全相同。2、配位化合物概念:金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配位化合物,简称配 合物。配合物的组成7常见配合物的生成 A 向硫酸铜溶液里逐滴加入氨水,先形成难溶的氢氧化铜沉淀,继续滴加难溶物溶解,得到深蓝 色的透明溶液实验中发生的两个反应的离子方程式蓝色沉淀 深蓝色溶液氢氧化铜与足量氨水反应后溶解是因为生成Cu(NH3)42+ B 向盛有氯化铁溶液的试管中滴加 1 滴硫氰化钾溶液血红色 【小结】形成配位化合物时某些性质发生改变,比如颜色、溶解度等。配位键的强度有大有小,因而有 的配位化合物很稳定,有的很不稳定。 要点诠释:要点诠释:配位化合物小结Cu(NH3)4SO4 硫酸化四氨合铜Cu中心原子 NH3配位体 N配位原子 4配位数 1、中心离子或原子(也称形成体):有空轨道主要是一些过渡金属,如铁、钴、镍、铜、银、金、铂等金属元素的离子;或是具有高氧化数的非金 属元素,硼,硅、磷等,如 NaBF4 中的 B、K2SiF6中的 Si 和 NH4PF6中的 P;或是不带电荷的中性原子, 如Ni(CO)4, Fe(CO)5中的 Ni, Fe 都是中性原子 2、配位体和配位原子:有孤对电子常见的配位体:含氮配位体 NH3、NCS-;含硫配位体 SCN-;含卤素配位体 F-、Cl-、Br-、I-;含碳配位 体 CN-、CO;含氧配位体 H2O、OH-;羧酸、醇、醚等 3、配位数:与中心离子直接以配位键结合的配位原子个数例:AlF63- 配位数 6 、 Cu(NH3)4SO4 配位数 4 中心离子的电荷高,对配位体的吸引力较强,有利于形成配位数较高的配合物。中心离子半径越大, 其周围可容纳配体就越多,配位数越大。 4、配合物的命名:关键在于配合物内界(即配离子)的命名。 命名顺序:自右向左:配位体数(即配位体右下角的数字)配位体名称“合”字或“络”字 中心离子的名称中心离子的化合价。:配位阴离子配合物-配位阴离子“酸”外界K2SiF6 六氟合硅酸钾KPtCl5(NH3) 五氯·一氨合铂酸钾Na3AlF6 六氟合铝酸三钠:配位阳离子配合物 “某化某”或“某酸某” Co(NH3)6Br3 三溴化六氨合钴8Cu(NH3)4Cl2 二氯化四氨合铜:中性配合物PtCl2(NH3)2 二氯·二氨合铂Ni(CO)4 四羰基合镍【典型例题典型例题】 类型一:有关共价键等概念的辨析 例 1 下列说法正确的是( )A、含有共价键的化合物一定是共价化合物B、分子中只有共价键的化合物一定是共价化合物C、由共价键形成的分子一定是共价化合物D、只有非金属原子间才能形成共价键【思路点拨】共价键指原子间通过共用电子对形成的化学键,实质就是成键原子电子云的重叠,可以用 三个键参数来描述共价键。根据重叠方式的不同,可分为 和 键,两种键的牢固程度不同, 键易断裂。【答案】B 【解析】离子化合物一定有离子键,可以有共价键;共价化合物只能有共价键。由共价键形成的分子, 可以是化合物,也可以是单质;共价键与离子键的区别是成键原子电负性的差值,金属与非金属原子间也可 以形成共价键,如 AlCl3。 【总结升华】离子键与共价键的比较离子键共价键定义阴、阳离子通过静电力形成的强烈的相 互作用原子间通过共用电子对形成的强烈的相 互作用形成条件a活泼金属(、)与活泼非金属 (、)之间 例如:NaCl、MgO b金属离子(或 NH4)与带电原子团之 间 例如:NaOH、NH4NO3 说明:成键原子对应元素的电负性差大 于 1.7 时。a非金属与非金属原子之间 例如:H2(单质) 、HCl(化合物) b某些不活泼金属与非金属之间 例如:AlCl3 说明:成键原子对应元素的电负性差小 于 1.7 时。离子化合物一定有 例如:NaCl、MgO可能有 例如:NaOH、Na2O2、NH4Cl、NH4NO3 共价化合物一定无一定有 例如:HCl、H2O、H2O2、CO2注意:a、离子化合物中一定含有离子键,也可能含有共价键b、共价化合物中一定含有共价键,一定不含有离子键c、离子键只存在于离子化合物中,不存在共价化合物中d、共价键可能存在于单质、离子化合物和共价化合物中 举一反三:举一反三: 【变式 1】下列物质分子中无 键的是( )AN2 BO2 CCl2 DC2H4 【答案】C【变式 2】下列关于化学键的叙述,正确的是( )A构成单质分子的粒子一定含有共价键B由非金属元素组成的化合物不一定是共价化合物9C非极性键只存在双原子单质分子里D不同元素组成的多原子分子里的化学键一定是非极性键 【答案】B 【解析】此类问题可通过找反例来证明。类型二:等电子体及 8 电子结构 例 2 六氧化四磷的分子结构中只含有单键,且每个原子的最外层都满足 8 个电子结构,则该分子中含有 的共价键数目是:( )A10 B12 C24 D28 【思路点拨】本题考查 8 电子结构,较简单,明确分子结构后对最外层电子加和即可。 【答案】B 【解析】P4O6中每个原子单独满足 8 电子结构时需要 80 个电子,10 个原子可提供的成键电子数 56 个, 形成一个单键需 2 个电子,所以分子中含有共价键数目为(80-56)/2=12 【总结升华】8 电子结构的判断技巧:可以根据价电子数与共价键数目之和快速计算. 价电子数与共价键 数目之和=8 举一反三:举一反三: 【变式 2】下列分子中所有原子都满足 8 电子结构的是( )A光气(COCl2) B六氟化硫(SF6) C二氟化氙 D三氟化硼 【答案】A 【解析】A 光气 COCl2 C: 4+4=8 O: 6+ 2 =8 Cl: 7+ 1 =8BSF6 S: 6+6=12 F: 7+ 1 =8CXeF2 Xe: 8+2=10 F: 7+1=8DBF3 B: 3+3=6 F: 7+ 1 =8例 3 科学规定:分子中原子个数和价电子数都相等的互为等电子体;等电子体的结构性质均相似。最新 研究表明生命起源于火山爆发,是因为火山爆发产生的气体中含有 1%的羰基硫(COS) ,已知羰基硫分子中所 有原子的最外层都满足 8 电子结构,结合等电子原理,判断有关说法不正确的是( )A. 羰基硫与 CO2是等电子体B. 羰基硫的电子式为: C. 羰基硫沸点比 CO2低D. 羰基硫分子中三个原子处于同一直线上 【答案】C 【解析】等电子体的理论,明确的给出了提示;COS 与 CO2为等电子体。那么 COS 的结构与 CO2存在相似, 就会顺利确定。举一反三:举一反三: 【变式 1】“笑气”(N2O)是人类最早应用于医疗的麻醉剂之一。有关理论认为 N2O 与 CO2分子具有相似的 结构(包括电子式),两者互为 关系;又已知 N2O 分子中氧原子只与一个氮原子相连,则 N2O 的电子 式可表示为 ,由此可知它 (填“含有”或“不含”)非极性键。【答案】等电子体 含有 类型三:键参数的概念及其应用 例 4 下列说法中,正确的是( )A、由分子构成的物质中一定含有共价键B、离子化合物中一定含有金属元素C、正四面体结构的分子中的键角一定是 109°28D、不同的原子的化学性质可能相同 【思路点拨】本题考查化学键及其中共价键的参数。明确物质中含有化学键的种类、共价键各项参数的 意义。 【答案】D 【解析】A 错误,比如惰性气体都是单原子分子,无共价键;B 错误,比如 NH4Cl;C 错误,比如 P4是正 四面体结构的分子,键角是 90°。10【总结升华】键能、键长决定了共价键的稳定性;键长、键角决定了分子的空间构型。举一反三:举一反三: 【变式 1】下列说法中正确的是( )A、N- C 的键长比 N-N 的键长小 B、H2O 键角是 180°,NH3是平面三角形C、H-H 比 H-F 键长短,所以 H-H 键键能大 D、C=C 键键能比 C-C 键大,所以乙烯比乙烷更稳定 【答案】C 【解析】键长的大小可通过比较半径得出;C=C 键是 1 个 键和 1 个 键,其中的 键不稳定,容易 断裂;H2O 键角是 105°,NH3是三角锥形。类型四:应用 VSEPR 理论预测分子或离子的构型例 5 用价层电子对互斥模型推测下列分子或离子的空间构型。BeCl2_ SCl2_SO32-_ SF6_ 【思路点拨】VSEPR 模型预测分子立体结构方法:首先确定中心原子的价层电子对数,然后确定中心原子 有无孤对电子,再结合实际例子分析。若中心原子周围的原子数与孤对电子对数之和分别为 2、3、4,则 VSEPR 理想模型(注:与分子的立体结构不同)分别是直线形、平面形、四面体形,再判断分子或离子的空间 构型 【答案】直线形 V 形 三角锥形 正八面体形 【解析】BeCl2分子中心原子 Be,孤对电子数+结合的原子数=0+2=2,VSEPR 理想模型为直线形,无孤对 电子,VSEPR 理想模型就是其空间构型,所以 BeCl2分子为直线形。SCl2分子中心原子 S,孤对电子数+结合的原子数=2+2=4,VSEPR 理想模型为四面体形,有 2 对孤对 电子,所以 SCl2分子空间构型为 V 形。SO32-离子中心原子 S,孤对电子数+结合的原子数=1+3=4,VSEPR 理想模型为四面体形,有 1 对孤对 电子,SO32-离子空间构型为三角锥形。SF6分子中心原子 S,孤对电子数+结合的原子数=0+6=6,VSEPR 理想模型为八面体形,无孤对电子, VSEPR 理想模型就是其空间构型,所以 SF6分子为正八面体形 【总结升华】对于一个 ABn 型的共价型分子,中心原子 A 周围电子对排布的几何形状,主要取决于中心 原子 A 的价电子层中的电子对数(成键电子对数+孤对电子数) ,这些电子对的位置倾向于分离得尽可能远, 使它们之间的斥力最小。由于孤对电子对成键电子的斥力影响较大,所以含有孤对电子对的分子中键角比理 想模型的键角要小一些 举一反三:举一反三: 【变式 1】填写下表中各分子或离子的中心原子的孤对电子对数及结合的原子数,据此应用 VSEPR 理论判 断各分子或离子的构型化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型H2S NH2 BF3 CHCl3 SiF4 【答案】化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型H2S22V 形NH2- 22V 形BF3 03平面三角形CHCl3 04四面体SiF4 04正四面体类型五:应用杂化轨道理论判断分子或离子的杂化方式11例 6 应用杂化轨道理论判断多原子分子的杂化方式及立体结构化学式中心原子孤对电子对数杂化轨道数杂化轨道类型分子结构PO43- SO3 NCl3 HCN SO2 【思路点拨】首先判断杂化轨道的数目,中心原子的孤对电子对数与相连的其他原子数之和,就是杂化 轨道数;然后得出杂化轨道的类型;三种杂化轨道的轨道形状,sp 杂化的直线形杂化轨道,sp2 杂化的平面 三角形,sp3杂化的四面体构形 【答案】化学式中心原子孤对电子对数杂化轨道数杂化轨道类型分子结构PO43- 04sp3 正四面体形SO3 03sp2 平面三角形NCl3 14sp3 三角锥形HCN02sp 直线形SO2 13sp2 V 形【解析】比如 CH4分子中心原子 C,其杂化轨道数=孤对电子对数+其相连的其他原子数=0+4=4,有 4 个杂 化轨道,即 sp3杂化,正四面体形 【总结升华】杂化轨道只用于形成 键或用于容纳未参与成键的孤对电子,杂化轨道理论的主要应用是 能够更好解释分子的立体结构,而不是预测分子的立体结构 举一反三:举一反三: 【变式 1】为什么 NH3分子的键角既不是 90°也不是 109°28而是 107°? 【答案】因为 NH3分子其中心原子不是单纯用 2p 轨道与 H 原子轨道成键,所以键角不是 90°;N 原子在 成键的同时进行了 sp3杂化,用其中 3 个含未成对电子的杂化轨道与 3 个 H 原子的 1s 轨道成键,1 个含孤对电 子的杂化轨道对成键电子对的排斥的结果使键角不是 109°28,而是 107°。 【变式 2】下列常见微粒的中心原子的杂化轨道类型是 sp3的是:A、CH3+ B、CH4 C、SO2 D、CO2 【答案】B类型六:配位键、配位化合物的概念及表示方法 例 7 在Co(NH3)63+中,与中心离子形成形成配位键的原子是 ( )A、N 原子 B、H 原子 C、Co 原子 D、N、H 两种原子同时 【思路点拨】本题考查对配合物组成的知识的理解。Co(NH3)63+离子中,Co 为中心原子;NH3称作配位 体;N 称作配位原子;6 称作配位数 【答案】A 【总结升华】注意记忆配位化合物各组成部分的名称,知道常见的能形成配位键的原子或离子以及以配 位键成键的微粒的颜色、常见方程式的书写等。 举一反三:举一反三: 【变式 1】对于配合物Co(NH3)5ClCl2的名称正确的是 ( )A氯化氯氨合钴 B氯化氯氨合钴 C氯化一氯氨合钴 D二氯化一氯五氨合钴 【答案】D 【解析】本题考查配位化合物的命名,记忆命名顺序。命名顺序:自右向左:配位体数(即配位体右下角的 数字)配位体名称“合”字或“络”字中心离子的名称中心离子的化合价。

    注意事项

    本文(2019高中化学 共价键 分子的立体结构(基础)知识讲解学案 新人教版选修3.doc)为本站会员(随风)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开