初三数学期中上册知识点.docx
文本为Word版本,下载可任意编辑初三数学期中上册知识点 要想取得好的学习成绩,必须要有良好的学习习惯。习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习习惯,就会使自己学习感到有序而轻松。以下是为您整理的初三数学期中上册知识点,供大家查阅。 1.初三数学期中上册知识点 三角形中位线的定理 三角形的中位线平行于三角形的第三边,并且等于第三边的一半。 平行四边形的对边相等; 平行四边形的对角相等; 平行四边形的对角线互相平分。 矩形的性质 矩形具有平行四边形的一切性质; 矩形的四个角都是直角; 矩形的对角线相等. 正方形的判定与性质 1.判定方法: (1)邻边相等的矩形; (2)邻边垂直的菱形; (3)对角线垂直的矩形; (4)对角线相等的菱形; 2.性质: (1)边:四边相等,对边平行; (2)角:四个角都相等都是直角,邻角互补; (3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。 2.初三数学期中上册知识点 1、反比例函数的定义 2、用待定系数法求反比例函数的解析式 由于反比例函数 只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。 3、反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中 所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:列表;描点;连线。 再作反比例函数的图像时应注意以下几点: 列表时选取的数值宜对称选取; 列表时选取的数值越多,画的图像越精确; 连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; 画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。 3.初三数学期中上册知识点 1、三视图 主视图从正面看到的图 左视图从左面看到的图 俯视图从上面看到的图 画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等. 虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线. 2、投影 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象. 太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。 在同一时刻,物体高度与影子长度成比例. 物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影. 探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称 为中心投影 皮影和手影都是在灯光照射下形成的影子.它们是中心投影。 3、视点、视线、盲区的定义以及在生活中的应用 眼睛所在的位置称为视点 由视点发出的光线称为视线 眼睛看不到的地方称为盲区 4.初三数学期中上册知识点 一、定义:有两边相等的三角形是等腰三角形。 二、性质: 1.等腰三角形的两个底角相等(简写成“等边对等角”) 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”) 3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等) 4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证) 7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 三、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。 特殊的等腰三角形 等边三角形 1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。 (注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。 2、性质:等边三角形的内角都相等,且均为60度。 等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。 等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。 3、判定:三边相等的三角形是等边三角形。 三个内角都相等的三角形是等边三角形。 有一个角是60度的等腰三角形是等边三角形。 有两个角等于60度的三角形是等边三角形。 5.初三数学期中上册知识点 一、圆的定义 1、以定点为圆心,定长为半径的点组成的图形。 2、在同一平面内,到一个定点的距离都相等的点组成的图形。 二、圆的各元素 1、半径:圆上一点与圆心的连线段。 2、直径:连接圆上两点有经过圆心的线段。 3、弦:连接圆上两点线段(直径也是弦)。 4、弧:圆上两点之间的曲线部分。半圆周也是弧。 (1)劣弧:小于半圆周的弧。 (2)优弧:大于半圆周的弧。 5、圆心角:以圆心为顶点,半径为角的边。 6、圆周角:顶点在圆周上,圆周角的两边是弦。 7、弦心距:圆心到弦的垂线段的长。 三、圆的基本性质 1、圆的对称性 (1)圆是图形,它的对称轴是直径所在的直线。 (2)圆是中心对称图形,它的对称中心是圆心。 (3)圆是对称图形。 2、垂径定理。 (1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。 (2)推论: 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。 平分弧的直径,垂直平分弧所对的弦。 3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。 (1)同弧所对的圆周角相等。 (2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。 4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。 5、夹在平行线间的两条弧相等。 6、设O的半径为r,OP=d。 7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。 (2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。 (直角的外心就是斜边的中点。) 8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。 直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。 9、中,A(x1,y1)、B(x2,y2)。 10、圆的切线判定。 (1)d=r时,直线是圆的切线。 切点不明确:画垂直,证半径。 (2)经过半径的外端且与半径垂直的直线是圆的切线。 切点明确:连半径,证垂直。 11、圆的切线的性质(补充)。 (1)经过切点的直径一定垂直于切线。 (2)经过切点并且垂直于这条切线的直线一定经过圆心。 12、切线长定理。 (1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。 (2)切线长定理。 PA、PB切O于点A、B PA=PB,1=2。 13、内切圆及有关计算。 (1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。 (2)如图,ABC中,AB=5,BC=6,AC=7,O切ABC三边于点D、E、F。 求:AD、BE、CF的长。 分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x. 可得方程:5-x+7-x=6,解得x=3 (3)ABC中,C=90°,AC=b,BC=a,AB=c。 求内切圆的半径r。 分析:先证得正方形ODCE, 得CD=CE=r AD=AF=b-r,BE=BF=a-r b-r+a-r=c 14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。 BC切O于点B,AB为弦,ABC叫弦切角,ABC=D。 (2)相交弦定理。 圆的两条弦AB与CD相交于点P,则PA?PB=PC?PD。 (3)切割线定理。 如图,PA切O于点A,PBC是O的割线,则PA2=PB?PC。 (4)推论:如图,PAB、PCD是O的割线,则PA?PB=PC?PD。 15、圆与圆的位置关系。 (1)外离:d>r1+r2,交点有0个; 外切:d=r1+r2,交点有1个; 相交:r1-r2 内切:d=r1-r2,交点有1个; 内含:0d (2)性质。 相交两圆的连心线垂直平分公共弦。 相切两圆的连心线必经过切点。 16、圆中有关量的计算。 (1)弧长有L表示,圆心角用n表示,圆的半径用R表示。 (2)扇形的面积用S表示。 (3)圆锥的侧面展开图是扇形。 r为底面圆的半径,a为母线长。 第 10 页 共 10 页