欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    简单复合函数的求导法则(精品).ppt

    • 资源ID:71368075       资源大小:658KB        全文页数:24页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    简单复合函数的求导法则(精品).ppt

    一、教学目标:一、教学目标:1、了解简单复合函数、了解简单复合函数的求导法则;的求导法则;2、会运用上述法则,求简、会运用上述法则,求简单复合函数的导数。单复合函数的导数。二、教学重点:二、教学重点:简单复合函数的求导法简单复合函数的求导法则的应用则的应用教学难点:教学难点:简单复合函数的求导法则的简单复合函数的求导法则的应用应用三、教学方法:三、教学方法:探析归纳,讲练结合探析归纳,讲练结合四、教学过程四、教学过程复习:复习:两个函数的和、差、积、商的两个函数的和、差、积、商的求导公式。求导公式。1、常见函数的导数公式:常见函数的导数公式:2、法则、法则1 法则法则2,法则法则3 复合函数的导数复合函数的导数新授课新授课函数函数 ,构成间的关系?构成间的关系?可由可由 与与 复合得到复合得到 例例1 指出下列函数的复合关系:指出下列函数的复合关系:(1)(2)(3)(4)由由 复合而成复合而成 解解:(:(1)(2 2)由由 复合而成复合而成(3 3)由由 复合而成复合而成(4 4)由由 复合而成复合而成 复合函数的导数复合函数的导数新授课新授课例例2 写出由下列函数复合而成的函数:写出由下列函数复合而成的函数:(1)(2 2)解解:(:(1 1)(2)引例引例 一艘油轮发生泄漏事故,泄出的原油在海面上形一艘油轮发生泄漏事故,泄出的原油在海面上形成一个圆形油膜,其面积成一个圆形油膜,其面积 是半径是半径 的函数:的函数:油膜半径油膜半径 随着时间随着时间 的增加而扩大,其函数关的增加而扩大,其函数关系为:系为:问:油膜面积问:油膜面积 关于时间关于时间 的瞬时变化率是多的瞬时变化率是多少?少?分析:分析:油膜面积油膜面积 关于时间关于时间 的新函数:的新函数:由于由于所以由导数的运算法则可得:所以由导数的运算法则可得:概括概括 一般地,对函数一般地,对函数 和和 ,给定给定 的一个值,可得的一个值,可得 的值,进而确定的值,进而确定 的值,的值,这就确定了新函数这就确定了新函数 ,它是由,它是由 和和 复合而成的,我们称之为复合函复合而成的,我们称之为复合函数,其中数,其中 是中间变量。是中间变量。复合函数复合函数 的导数:的导数:复合函数复合函数 中,令中,令 ,则,则注意:注意:复合函数的中间变量可以是任何函数,在高中复合函数的中间变量可以是任何函数,在高中阶段我们只讨论阶段我们只讨论 的情况。的情况。推广:推广:注意:注意:不要写成不要写成 !对对x求导求导对对 求导求导复合函数的导数复合函数的导数若若 ,求,求 并分析三个函数解析式以及导数之间的关系并分析三个函数解析式以及导数之间的关系新授课新授课函数函数 可由可由 复合而成复合而成复合函数的导数复合函数的导数新授课新授课 一般地,设函数一般地,设函数 在点在点 处有导数处有导数 ,函,函数数 在点在点 的对应点的对应点 处有导数处有导数 ,则复合,则复合函数函数 在点在点 处也有导数,且处也有导数,且或写作或写作 复合函数的导数复合函数的导数例题讲解例题讲解例例3 求求 的导数的导数解:设解:设 ,则则 例例1 求函数求函数 的导数。的导数。例例2 求函数求函数 的导数。的导数。解析解析解析解析例例4 4、一个港口的某一一个港口的某一观测观测点的水位在退潮的点的水位在退潮的过过程程中,水面高度中,水面高度y y(单单位:位:cmcm)。关于)。关于时间时间t t(单单位:位:s s)的函数)的函数为为,求函数在,求函数在t t=3=3时时的的导导数,数,并解释它的实际意义。并解释它的实际意义。解:解:函数函数是由函数是由函数与与复合而成的,其中复合而成的,其中x x是中是中间变间变量。量。将将t t=3=3代入代入得:得:(cm/s)。)。它表示当它表示当t=3时,水面高度下降的速度为时,水面高度下降的速度为 cm/s。例例4 求下列函数的导数:求下列函数的导数:前面所求的都是具体的复合函数的导数,而此题前面所求的都是具体的复合函数的导数,而此题中的对应法则中的对应法则 f 是未知的,是抽象的复合函数。它们是未知的,是抽象的复合函数。它们的导数如何求得?的导数如何求得?解析解析(1)首先要首先要弄清复合关系弄清复合关系,特别要,特别要注意中间变量注意中间变量;(2)尽可能地将函数尽可能地将函数化简化简,然后再,然后再求导求导;(3 3)要注意复合函数求导法则与四则运算的综合要注意复合函数求导法则与四则运算的综合运用运用;(4)复合函数求导法则,常被称为复合函数求导法则,常被称为“链条法则链条法则”,一环套一环,缺一不可一环套一环,缺一不可。复合函数求导法则的注意问题:复合函数求导法则的注意问题:例例3 31.求下列函数的导数:求下列函数的导数:2.求曲线求曲线 在在 处的切线方程。处的切线方程。动手做一做动手做一做例例4求下列函数的导数:求下列函数的导数:动手做一做动手做一做小结小结关键:关键:分清函数的复合关系,合理选定中间变量。分清函数的复合关系,合理选定中间变量。复合函数求导公式:复合函数求导公式:利用复合函数的求导公式可以求抽象函数的导数。利用复合函数的求导公式可以求抽象函数的导数。对于抽象复合函数的求导对于抽象复合函数的求导,要从其形式上把握其要从其形式上把握其结构特征,找出中间变量;另外要充分运用复合关结构特征,找出中间变量;另外要充分运用复合关系的求导法则。系的求导法则。抽象复合函数的导数:抽象复合函数的导数:结束结束 利用复合函数的求导法则来求导数时,首先要利用复合函数的求导法则来求导数时,首先要弄清复合关系,弄清复合关系,而选择而选择中间变量中间变量是复合函数求导的是复合函数求导的关键。关键。分析:分析:令令 ,则函数是由,则函数是由 与与 复合而成,由复合函数求导法则复合而成,由复合函数求导法则可知:可知:解:解:例例2解:解:令令 ,则函数是由,则函数是由 与与 复合而成,由复合函数求导法则复合而成,由复合函数求导法则可知:可知:利用复合函数的求导法则来求导数时,利用复合函数的求导法则来求导数时,选择中间选择中间变量是复合函数求导的关键变量是复合函数求导的关键。必须。必须正确分析复合函数正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成是由哪些基本函数经过怎样的顺序复合而成的,的,分清分清其间的复合关系其间的复合关系。要善于把一部分量、式子暂时当作。要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量。求导时一个整体,这个暂时的整体,就是中间变量。求导时需要记住中间变量,注意逐层求导,不遗漏,而其中需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数,求导后,要把中间变量特别要注意中间变量的系数,求导后,要把中间变量转换成自变量的函数。转换成自变量的函数。总结总结概括概括 而而对于抽象复合函数的求导对于抽象复合函数的求导,一方面要从其形式一方面要从其形式上把握其结构特征,找出中间变量,另一方面要充上把握其结构特征,找出中间变量,另一方面要充分运用复合关系的求导法则。分运用复合关系的求导法则。分析分析:求复合函数的导数求复合函数的导数,关键关键在于在于分清函数的复合关分清函数的复合关系系,合理选定中间变量,明确求导过程中每次是哪,合理选定中间变量,明确求导过程中每次是哪个变量对哪个变量求导。个变量对哪个变量求导。解:解:(1)函数是由)函数是由 与与 复合而成的,复合而成的,由复合函数的求导法则知:由复合函数的求导法则知:(2)函数由)函数由 与与 复合而成,复合而成,由复合函数的求导法则知:由复合函数的求导法则知:练习练习

    注意事项

    本文(简单复合函数的求导法则(精品).ppt)为本站会员(hyn****60)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开