欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理学案 新人教A版选修2-2.doc

    • 资源ID:714718       资源大小:139.98KB        全文页数:9页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理学案 新人教A版选修2-2.doc

    12.1.22.1.2 演绎推理演绎推理学习目标:1.理解演绎推理的含义(重点)2.掌握演绎推理的模式,会利用三段论进行简单的推理(重点、易混点) 自 主 预 习·探 新 知1演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理(2)特点:演绎推理是由一般到特殊的推理2三段论一般模式常用格式大前提已知的一般原理M是P小前提所研究的特殊情况S是M结论根据一般原理,对特殊情况做出的判断S是P思考:如何分清大前提、小前提和结论?提示在演绎推理中,大前提描述的是一般原理,小前提描述的是大前提里的特殊情况,结论是根据一般原理对特殊情况作出的判断,这与平时我们解答问题中的思考是一样的,即先指出一般情况,从中取出一个特例,特例也具有一般意义例如,平行四边形对角线互相平分,这是一般情况;矩形是平行四边形,这是特例;矩形对角线互相平分,这是特例具有一般意义基础自测1思考辨析(1)“三段论”就是演绎推理( )(2)演绎推理的结论是一定正确的( )(3)演绎推理是由特殊到一般再到特殊的推理( )(4)演绎推理得到结论的正确与否与大前提、小前提和推理形式有关( )答案 (1)×(2)×(3)× (4)2 “四边形ABCD是矩形,所以四边形ABCD的对角线相等” ,补充该推理的大前提是( )A正方形的对角线相等B矩形的对角线相等C等腰梯形的对角线相等D矩形的对边平行且相等B B 得出“四边形ABCD的对角线相等”的大前提是“矩形的对角线相等” 3三段论:“小宏在 2018 年的高考中考入了重点本科院校;小宏在 2018 年的高考中只要正2常发挥就能考入重点本科院校;小宏在 2018 年的高考中正常发挥”中, “小前提”是_(填序号)解析 在这个推理中,是大前提,是小前提,是结论答案 4下列几种推理过程是演绎推理的是_. 【导学号:31062133】两条平行直线与第三条直线相交,内错角相等,如果A和B是两条平行直线的内错角,则AB;金导电,银导电,铜导电,铁导电,所以一切金属都导电;由圆的性质推测球的性质;科学家利用鱼的沉浮原理制造潜艇解析 是演绎推理;是归纳推理;是类比推理答案 合 作 探 究·攻 重 难演绎推理与三段论(1)下面四个推导过程符合演绎推理三段论形式且推理正确的是( )A大前提:无限不循环小数是无理数;小前提: 是无理数;结论: 是无限不循环小数B大前提:无限不循环小数是无理数;小前提: 是无限不循环小数;结论: 是无理数C大前提: 是无限不循环小数;小前提:无限不循环小数是无理数;结论: 是无理数D大前提: 是无限不循环小数;小前提: 是无理数;结论:无限不循环小数是无理数(2)将下列推理写成“三段论”的形式:向量是既有大小又有方向的量,故零向量也有大小和方向;0.332 是有理数;ysin x(xR R)是周期函数解析 (1)对于 A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式;对于B,符合演绎推理三段论形式且推理正确;对于 C,大小前提颠倒,不符合演绎推理三段论形式;对于 D,大小前提及结论颠倒,不符合演绎推理三段论形式答案 B(2)大前提:向量是既有大小又有方向的量小前提:零向量是向量结论:零向量也有大小和方向大前提:所有的循环小数都是有理数3小前提:0.332 是循环小数结论:0.332 是有理数大前提:三角函数是周期函数小前提:ysin x(xR R)是三角函数结论:ysin x(xR R)是周期函数规律方法 把演绎推理写成“三段论”的一般方法:1用“三段论”写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般性原理,小前提提供了一种特殊情况,两个命题结合起来,揭示一般性原理与特殊情况的内在联系.2在寻找大前提时,要保证推理的正确性,可以寻找一个使结论成立的充分条件作为大前提.跟踪训练1正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数,以上推理中“三段论”中的_是错误的. 【导学号:31062134】解析 f(x)sin(x21)不是正弦函数,故小前提错误答案 小前提2将下列演绎推理写成三段论的形式平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;等腰三角形的两底角相等,A,B是等腰三角形的底角,则AB;通项公式为an2n3 的数列an为等差数列解 大前提:平行四边形的对角线互相平分,小前提:菱形是平行四边形,结论: 菱形的对角线互相平分大前提:等腰三角形的两底角相等,小前提:A,B是等腰三角形的底角,结论: AB.大前提:数列an中,如果当n2 时,anan1为常数,则an为等差数列,小前提:通项公式为an2n3 时,若n2,则anan12n32(n1)32(常数),结论: 通项公式为an2n3 的数列an为等差数列. 用三段论证明几何问题如图 2­1­12 所示,D,E,F分别是BC,CA,AB边上的点,BFDA,DEBA,求证:DEAF.写出“三段论”形式的演绎推理4图 2­1­12解 (1)同位角相等,两直线平行,(大前提)BFD和A是同位角,且BFDA,(小前提)所以DFAE.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DEBA且DFEA,(小前提)所以四边形AFDE为平行四边形(结论)(3)平行四边形的对边相等,(大前提)DE和AF为平行四边形的对边,(小前提)所以DEAF.(结论)规律方法 1用“三段论”证明命题的格式×××××× (大前提)×××××× (小前提)×××××× (结论)2用“三段论”证明命题的步骤:理清楚证明命题的一般思路;找出每一个结论得出的原因;把每个结论的推出过程用“三段论”表示出来跟踪训练3如图 2­1­13,在空间四边形ABCD中,E,F分别是AB,AD的中点求证:EF平面BCD. 【导学号:31062135】图 2­1­13证明 三角形的中位线平行于底面,(大前提)点E、F分别是AB、AD的中点,(小前提)5所以EFBD.(结论)若平面外一条直线平行于平面内一条直线,则这条直线与此平面平行,(大前提)EF平面BCD,BD平面BCD,EFBD,(小前提)EF平面BCD. (结论)用三段论证明代数问题探究问题1数的大小比较常见方法有哪些?提示:作差法、作比法、函数性质法(单调性、奇偶性等)、图象法、中间量法(常取 0或 1 作为媒介)等2证明函数性质(单调性、奇偶性、周期性)的依据是什么?试以函数单调性给予说明提示:证明函数性质(单调性、奇偶性、周期性)的依据是函数性质的相关定义及有关的知识原理如函数单调性的证明常依据函数单调性的定义及单调性与导数的关系给予证明3判断数列是等差(等比)数列的依据是什么?提示:判断数列是等差(等比)数列的依据是等差(等比)数列的定义. (1)设x,y,z为正数,且 2x3y5z,则( )【导学号:31062136】A2x<3y<5z B5z<2x<3yC3y<5z<2x D3y<2x<5z(2)已知函数f(x)ax(a1),证明:函数f(x)在(1,)上为增函数x2 x1思路探究 1.借助于指对互化及不等式大小的比较方法求解;2.利用函数的单调性或导数法求解(1)D D 令t2x3y5z,x,y,z为正数,t1.则xlog2t,同理,y,z.lg t lg 2lg t lg 3lg t lg 52x3y2lg t lg 23lg t lg 3lg t2lg 33lg 2 lg 2 × lg 360,lg tlg 9lg 8 lg 2 × lg 32x3y.又2x5z2lg t lg 25lg t lg 5lg t2lg 55lg 2 lg 2 × lg 50,lg tlg 25lg 32 lg 2 × lg 52x5z,3y2x5z.故选 D.(2)法一:(定义法)任取x1,x2(1,),且x1x2,则f(x2)f(x1)ax2ax1x22 x21x12 x11ax2ax1x22 x21x12 x11ax1(ax2x11)x11x22x12x21 x21x11ax1(a x2x11).3x2x1 x21x11因为x2x10,且a1,所以a x2x11.而1x1x2,所以x110,x210,所以f(x2)f(x1)0,所以f(x)在(1,)上为增函数法二:(导数法)f(x)axax1.x13 x13 x1所以f(x)axln a.3 x12因为x1,所以(x1)20,所以0.3 x12又因为a1,所以 ln a0,ax0,所以axln a0.所以f(x)0.于是得f(x)ax在(1,)上是增函数x2 x17母题探究:1.(变条件)把本例(1)的条件变换如下:已知 2a3,2b6,2c12,则a,b,c的关系是( )A成等差数列但不成等比数列B成等差数列且成等比数列C成等比数列但不成等差数列D不成等比数列也不成等差数列A A 由条件可知alog23,blog26,clog212.因为aclog23log212log2 362log2 62b,所以a,b,c成等差数列又因为aclog2 3log2 12(log2 6)2b2,所以a,b,c不成等比数列故选 A.2(变条件)把本例(2)的函数换成“y” ,求证:函数y是奇函数,且2x1 2x12x1 2x1在定义域上是增函数证明 y1,2x12 2x12 2x1所以f(x)的定义域为 R R.f(x)f(x)(12 2x1) (12 2x1)2(2 2x12 2x1)2(2 2x12·2x 2x1)2220.22x1 2x1即f(x)f(x),所以f(x)是奇函数任取x1,x2R R,且x1<x2.则f(x1)f(x2)(12 2x11) (12 2x21)22·.(1 2x211 2x11)2x12x2 2x212x11由于x1<x2,从而 2x1<2x2,2x12x2<0,所以f(x1)<f(x2),故f(x)为增函数规律方法 五类代数问题中的三段论1函数类问题:比如函数的单调性、奇偶性、周期性和对称性等.82导数的应用:利用导数研究函数的单调区间,求函数的极值和最值,证明与函数有关的不等式等.3三角函数问题:利用三角函数公式进行三角恒等变换,证明三角恒等式.4数列问题:数列的通项公式,前n项和公式的应用,证明等差数列和等比数列.5不等式类问题:如不等式恒成立问题,线性规划以及基本不等式的应用问题.当 堂 达 标·固 双 基1平行于同一直线的两直线平行,因为ab,bc,所以ac,这个推理称为( )A合情推理 B归纳推理C类比推理 D演绎推理D D 本题的推理模式是三段论,故该推理是演绎推理2三段论只有船准时起航,才能准时到达目的港;这艘船是准时到达目的港的;这艘船是准时起航的,其中大前提是( ) 【导学号:31062137】A BC DA A 根据三段论的定义,为大前提,为小前提,为结论,故选 A.3若大前提是:任何实数的平方都大于 0,小前提是:aR R,结论是:a20,那么这个演绎推理出错在( )A大前提 B小前提C推理过程 D没有出错A A 要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和结论及推理形式是否都正确,若这几个方面都正确,才能得到这个演绎推理正确因为任何实数的平方都大于 0,又因为a是实数,所以a20,其中大前提是:任何实数的平方都大于 0,它是不正确的4函数y2x5 的图象是一条直线,用三段论表示为:大前提:_.小前提:_.结论:_.解析 本题忽略了大前提和小前提大前提为:一次函数的图象是一条直线小前提为:函数y2x5 为一次函数结论为:函数y2x5 的图象是一条直线答案 一次函数的图象是一条直线 函数y2x5 是一次函数 函数y2x5 的图象是一条直线5. 用三段论证明:直角三角形两锐角之和为 90°.9证明 因为任意三角形内角之和为 180°(大前提),而直角三角形是三角形(小前提),所以直角三角形内角之和为 180°(结论)设直角三角形两个锐角分别为A、B,则有AB90°180°,因为等量减等量差相等(大前提),(AB90°)90°180°90°(小前提),所以AB90°(结论)

    注意事项

    本文(2019高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理学案 新人教A版选修2-2.doc)为本站会员(随风)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开