欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    向量的概念及基本运算课件.ppt

    • 资源ID:71473811       资源大小:812.50KB        全文页数:22页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    向量的概念及基本运算课件.ppt

    2023/1/311平平 面面 向向 量量 复复 习习运算运算 向量加法与减法向量加法与减法 平行四边形法则平行四边形法则平行的充要条件平行的充要条件平面向量的基本定理平面向量的基本定理三三 角角 形形 法法 则则向量及相关概念向量及相关概念 向量的数量积向量的数量积垂直的充要条件垂直的充要条件 实数与向量的积实数与向量的积 平平面面向向量量 共线向量定理共线向量定理2023/1/312向量定义:向量定义:既有既有大小大小又有又有方向方向的量叫向量。的量叫向量。(2)(2)零向量:零向量:(3)(3)单位向量:单位向量:长度等于长度等于1 1个单位长度个单位长度的向量的向量.(4)(4)平行向量:平行向量:方向方向相同相同或或相反相反的的非零向量非零向量.(5)(5)相等向量:相等向量:长度长度相等相等且方向且方向相同相同的向量的向量.(6)(6)相反向量:相反向量:长度长度相等相等且方向且方向相反相反的向量的向量.1.1.向量及相关概念向量及相关概念(1)(1)向量的模向量的模:向量的向量的大小大小也就是向量的也就是向量的长度长度称称为向量的模为向量的模.长度为长度为0 0的向量,记作的向量,记作 .2023/1/313例例1.1.判断下列命题是否正确,不正确的说明理由判断下列命题是否正确,不正确的说明理由(1)(1)若若 与与 同向,同向,且且则则(2)(2)对于任意向量对于任意向量则则且且 与与 方向相同,方向相同,(3)(3)所有的单位向量都相等所有的单位向量都相等.()()()()例题分析例题分析2023/1/314(5)(5)向量向量 与与 是共线向量是共线向量,则则A A、B B、C C、D D 四点共线四点共线.(6)(6)如果如果 ,则,则 .()()(4)(4)零向量与任意向量都平行零向量与任意向量都平行.()()2023/1/315(1 1)向量的加法)向量的加法几何运算:几何运算:三角形法则三角形法则2.2.向量的基本运算向量的基本运算AB平行四边形法则平行四边形法则COABC代数运算:代数运算:2023/1/316(2 2)向量的减法)向量的减法2.2.向量的基本运算向量的基本运算OAB几何运算:几何运算:代数运算:代数运算:三角形法则三角形法则2023/1/3172.2.向量的基本运算向量的基本运算几何意义:几何意义:坐标表示:坐标表示:实质就是向量的伸长与缩短实质就是向量的伸长与缩短2023/1/3182.2.向量的基本运算向量的基本运算(4 4)两个非零向量的数量积)两个非零向量的数量积几何意义:几何意义:坐标表示:坐标表示:与与在在的方向上的投影的方向上的投影的乘积的乘积2023/1/3193.3.平面向量之间的关系平面向量之间的关系(1 1)两个向量相等的两种形式)两个向量相等的两种形式2023/1/31103.3.平面向量之间的关系平面向量之间的关系(2)(2)向量平行向量平行(共线共线)充要条件充要条件若若则则有且只有一个实数有且只有一个实数 使得使得2023/1/31113.3.平面向量之间的关系平面向量之间的关系(3)(3)两个两个非零向量非零向量垂直的充要条件垂直的充要条件若若则则2023/1/3112例例2.2.已知已知 (1(1,2)2),(3 3,2)2),当当k k为何值时,为何值时,与与 垂直?垂直?当当k k为何值时,为何值时,与与 平行?平行?平行时它们是同向还是反向平行时它们是同向还是反向?例题分析例题分析2023/1/3113例例3.已知向量已知向量不共线,不共线,求实数求实数 的值的值.若向量若向量 与与 共线,共线,求证:求证:A A、B B、D D三点共线;三点共线;若若 ,;提示提示:又又 与与 有公共点有公共点B BA A、B B、D D三点共线三点共线2023/1/3114提示提示:例例3.已知向量已知向量不共线,不共线,求实数求实数 的值的值.若向量若向量 与与 共线,共线,求证:求证:A A、B B、D D三点共线;三点共线;若若 ,;若向量若向量 与与 共线共线存在实数存在实数 使使根据向量相等的条件根据向量相等的条件2023/1/3115例例3.已知向量已知向量分别是直角坐标系内与分别是直角坐标系内与x x轴、轴、y y轴方向相同的两个单位向量,轴方向相同的两个单位向量,提示提示:求实数求实数 的值的值.若向量若向量 与与 共线,共线,求证:求证:A A、B B、D D三点共线;三点共线;若若 ,;2023/1/31164.4.平面向量基本定理平面向量基本定理平面向量的基本定理平面向量的基本定理 如果如果 是同一平面内的两个是同一平面内的两个不共线不共线向量,那么对于这一平面内的任一向量向量,那么对于这一平面内的任一向量 ,有且只有有且只有一对实数一对实数 使使不共线的向量不共线的向量叫做表示这一平面内所有向量的一组叫做表示这一平面内所有向量的一组基底基底2023/1/3117.例例4.4.在在ABCABC中,点中,点D D是是BCBC的中点,点的中点,点N N在在边边ACAC上且上且ANAN2NC2NC,ADAD与与BNBN相交于点相交于点P P,若若 ,试用,试用 、表示表示 .例题分析例题分析2023/1/31182.分析:分析:同理可证:同理可证:2023/1/3119分析:分析:5.5.2023/1/3120总结总结*正确理解概念的基础上,掌握两个向量正确理解概念的基础上,掌握两个向量的相等、平行、垂直的充要条件,并能熟的相等、平行、垂直的充要条件,并能熟练运用向量的几何形式与代数形式进行运练运用向量的几何形式与代数形式进行运算,算,*理解共线向量定理、平面向量的基本定理解共线向量定理、平面向量的基本定理,并能简单应用,解题时注意数与形的理,并能简单应用,解题时注意数与形的结合结合.2023/1/3121教学目标教学目标:(1)(1)理解向量的概念,掌握向量的几何表示;理解向量的概念,掌握向量的几何表示;(2)(2)掌握向量的加法、减法、数乘的几何运算掌握向量的加法、减法、数乘的几何运算 及代数运算;及代数运算;(3)(3)了解共线向量的概念,理解两个向量了解共线向量的概念,理解两个向量 共线的充要条件;共线的充要条件;(4)(4)掌握平面向量的数量积定义和两个向量掌握平面向量的数量积定义和两个向量 垂直的充要条件;垂直的充要条件;(5)(5)理解平面向量的基本定理,并能简单运用理解平面向量的基本定理,并能简单运用.2023/1/3122

    注意事项

    本文(向量的概念及基本运算课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开