欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    一元二次方程与实际问题课件.ppt

    • 资源ID:71488121       资源大小:1.57MB        全文页数:95页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    一元二次方程与实际问题课件.ppt

    1.教学目标:1、会列一元二次方程解应用题;2、进一步掌握解应用题的步骤和关键;3、通过一题多解使学生体会列方程的实质,培养灵活处理问题的能力.重点:列方程解应用题.难点:会用含未知数的代数式表示题目里的中间量(简称关系式);会根据所设的不 同意义的未知数,列出相应的方程。2.一、复习列方程解应用题的一般步骤?第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;第二步:找出能够表示应用题全部含义的相等关系;第三步:根据这些相等关系列出需要的代数式(简称关系式)从而列出方程;第四步:解这个方程,求出未知数的值;第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名称)。3.一元二次方程复习4.传染问题百分率问题营销问题面积问题实际问题5.常见实际问题运用举例:(一)变化率的题目 增长率问题:设基数为a,平均增长率为x,则一次增长后的值为 ,二次增长后的值为 降低率问题:若基数为a,平均降低率为x,则一次降低后的值为,二次降低后的值为 巩固练习1、政府近几年下大力气降低药品价格,希望使广大人民群众看得起病吃得起药,某种针剂的单价由100元经过两次降价,降至64元,设平均每次下降的百分率为x,则可列方程().2、某商厦二月份的销售额为100万元,三月份销售额下降了20%,该商厦赶快改进经营措施,销售额开始稳步上升,五月份销售额达到了135.2万元,设四、五月份的平均增长率为x,则可列方程()a(1+x)a(1+x)2a(1-x)a(1-x)2100(1-X)=642100(1-20%)(1+x)=135.226.拓展提高:某超市1月份的营业额为200万元,第一季度营业额为1000万元,若平均每月增长率相同,求该增长率。200+200(1+x)+200(1+x)=100027.6.新华商场销售某种水箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?本题的主要等量关系是什么?每台冰箱的销售利润平均每天销售冰箱的数量5000元如果设每台冰箱降价x元,那么每台冰箱的定价就是_元,每台冰箱的销售利润为_元,平均每天销售冰箱的数量为_台,这样就可以列出一个方程,进而解决问题了解:设每台冰箱降价x元,根据题意,得解这个方程,得x1=x2=1502900150=2750所以,每台冰箱应定价2750元(2900 x)(2900 x2500)(8+4 )8.利润问题 某水果批发商场经销一种高档水果,如果每千克盈利1010元,每天可售出500500千克,经市场调查发现,在进价不变的情况下,若每千克涨价1 1元,日销售量将减少2020千克,现该商场要保证每天盈利60006000元,同时又让顾客得到实惠,那么每千克应涨价多少元?每千克的盈利每天的销售量=每天的盈利解:设每千克应涨价x x元.由题意得:(10+x)(500-20 x)=6000 (10+x)(500-20 x)=6000解得:x:x1 1=5,x=5,x2 2=10=10因为为了使顾客得到实惠,所以x=5x=5答:每千克应涨价5 5元.(10+x)(10+x)元(500-20 x)(500-20 x)千克60006000元9.(二)几何问题 方法提示:1)主要集中在几何图形的面积问题,这类问题的面积公式是等量关系,如果图形不规则应割或补成规则图形,找出各部分面积之间的关系,再运用规则图形的面积公式列出方程;2)与直角三角形有关的问题:直角三角形两直角边的平方和等于斜边的平方是 这类问题的等量关系,即用勾股定理列方程。巩固练习:如图,一块长方形铁板,长是宽的2倍,如果在4个角上截去边长为5cm的小正方形,然后把四边折起来,做成一个没有盖的盒子,盒子的容积是3000cm,求铁板的长和宽。10.面积问题 1.1.某中学有一块长为a a米,宽为b b米的矩形场地,计划在该场地上修筑宽是2 2米的两条互相垂直的道路,余下的四块矩形场地建成草坪.(1)(1)如下图,分别写出每条道路的面积,用含a,ba,b的代数式表示;(2)(2)已知a:b=2:1,a:b=2:1,并且四块草坪的面积和为312312平方米,请求出原来矩形场地的长和宽各为多少米?ab解:(1):(1)横条道路的面积为2a2a平方米,竖条道路的面积为2b2b平方米.(2)(2)设b=xb=x米,则a=2xa=2x米由题意得:(x-2)(2x-2)=312 (x-2)(2x-2)=312解得:x:x1 1=14,x=14,x2 2=-11(=-11(不合,舍去)答:此矩形的长与宽各为2828米,14,14米.11.拓展提高:在宽为20m,长为32m的矩形地面上修筑同样宽的道路,余下的部分种上草坪,要使草坪的面积为540,求两种方案下的道路的宽分别为多少?(32-2x)(20-x)=540(32-x)(20-x)=54012.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另外三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?(2)鸡场的面积能达到200m2吗?(3)鸡场的面积能达到250m2吗?如果能,请给出设计方案;如果不能,请说明理由.25m180m213.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另外三边用木栏围成,木栏长40m.解:(1)设养鸡场的靠墙的一边长为xm,根据题意得25mx180m214.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另外三边用木栏围成,木栏长40m.解:(1)设养鸡场垂直于墙的一边为xm,根据题意得25m40-2x180m215.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另外三边用木栏围成,木栏长40m.解:(2)解:(1)设养鸡场的靠墙的一边长为xm,根据题意得25mx200m216.例3 3、如图,要建造一个面积为130130平方米的小仓库,仓库的一边靠墙且墙长1616米,并在与墙平行的一边开一道1 1米宽的门。现有能围成3232米的木板,求仓库的长和宽。17.有一堆砖能砌12米长的围墙,现要围一个20平方米的鸡场,鸡场的一边靠墙(墙长7米),其余三边用砖砌成,墙对面开一个1米宽的门,求鸡场的长和宽各是多少米?解:设鸡场的宽为x x米,则长为(12+1-12+1-2x2x)=(13-2x13-2x)米,列方程得:X X(13-2x13-2x)=20=20解得:x x1 1=4=4,x x2 2=2.5=2.5经检验:两根都符合题意答:此鸡场的长和宽分别为5 5和4 4米或8 8与2.52.5米。13-2x=513-2x=5或8 818.v这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求 列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤类似,即审、设、列、解、检、答小结19.解应用题v列方程解应用题的一般步骤是:v1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?v2.设:设未知数,语句要完整,有单位(同一)的要注明单位;v3.列:列代数式,列方程;v4.解:解所列的方程;v5.验:是否是所列方程的根;是否符合题意;v6.答:答案也必需是完事的语句,注明单位且要贴近生活.v列方程解应用题的关键是:v找出相等关系.回顾与复习5 520.数字与方程v1.两个数的差等于4,积等于45,求这两个数.快乐学习1 121.数字与方程3.3.一个两位数,它的十位数字比个位数字小3,3,而它的个位数字的平方恰好等于这个两位数.求这个两位数.快乐学习3 322.数字与方程4.有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.快乐学习4 423.几何与方程v5.将一块正方形的铁皮四角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长.快乐学习5 524.几何与方程快乐学习6 6n6.一直角三角形的斜边长7cm,一条直角边比另一条直角边长1cm,求两条直角边长度.25.几何与方程v7.一块长方形草地的长和宽分别为20cm和15cm,在它的四周外围环绕着宽度相等的小路.已知小路的面积为246cm2,求小路的宽度.快乐学习7 7201515+2x20+2x26.几何与方程n8.如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.快乐学习 327.n11.某汽车在公路上行驶,它的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶 200m需要多长时间?运动与方程开启 智慧28.w13.甲公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为多少?增长率与方程开启 智慧29.w14.某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几?增长率与方程开启 智慧30.w17.某电冰箱厂每个月的产量都比上个月增长的百分数相同。已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了120000台,求该厂今年产量的月平均增长率为多少?开启 智慧增长率与方程31.w18.一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?开启 智慧美满生活与方程32.w19.小明将勤工助学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品剩下的450元连同应得的税后利息又全部按一年定期存入银行如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少?(精确到0.01%).开启 智慧美满生活与方程33.w 20.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每棵棵桃树的产量就会减少2个.如果要使产量增加15.2%,那么应种多少棵桃树?开启 智慧经济效益与方程34.销售问题n21.某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?源于生活,服务于生活35.n 22.22.某商店从厂家以每件2121元的价格购进一批商品,若每件商品售价为x x元,则每天可卖出(350-(350-10 x)10 x)件,但物价局限定每件商品加价不能超过进价的20%.20%.商店要想每天赚400400元,需要卖出多少年来件商品?每件商品的售价应为多少元?开启 智慧销售问题36.回味无穷小结 拓展v列方程解应用题的一般步骤是:v1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?v2.设:设未知数,语句要完整,有单位(同一)的要注明单位;v3.列:列代数式,列方程;v4.解:解所列的方程;v5.验:是否是所列方程的根;是否符合题意;v6.答:答案也必需是完事的语句,注明单位且要贴近生活.v列方程解应用题的关键是:v找出相等关系.v关于两次平均增长(降低)率问题的一般关系:va(1x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)37.数字与方程例2.有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.38.2.几何与方程v例1.一块长方形草地的长和宽分别为20cm和15cm,在它的四周外围环绕着宽度相等的小路.已知小路的面积为246cm2,求小路的宽度.201515+2x20+2x39.几何与方程n例2.如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均为885m2的6个矩形小块,水渠应挖多宽.40.几何与方程n例3.将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.n(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?n(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?n(3).这两个正方形的面积之和可能等于200m2吗?41.w例1.甲公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为多少?3.增长率与方程基本数量关系:a(1+x)2=b42.w例2.某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几?增长率与方程43.w例1.一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?4.美满生活与方程44.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?45.w例2.小明将勤工助学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品剩下的450元连同应得的税后利息又全部按一年定期存入银行如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少?(精确到0.01%).美满生活与方程46.w例.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每棵棵桃树的产量就会减少2个.如果要使产量增加15.2%,那么应种多少棵桃树?5.经济效益与方程47.6.我是商场精英n例.某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?48.n例.某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10 x)件,但物价局限定每件商品加价不能超过进价的20%.商店要想每天赚400元,需要卖出多少年来件商品?每件商品的售价应为多少元?7.利润与方程49.v例3、如图所示,已知一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 10 海里的圆形区域(包括边界)均会受到台风的影响,当轮船到A处时测得台风中心移动到位于点A正南方向的B处,且AB=100海里,若这艘轮船自A处按原速原方向继续航行,在途中是否会受到台风的影响?若会,试求出轮船最初遇台风的时间;若不会,请说明理由。AB50.v学以致用v某军舰以20海里/时的速度由西向东航行,一艘电子侦察船以30海里/时的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标。如图,当该军舰行至A处时,电子侦察船正位于A处正南方向的B处,且AB=90海里。如果军舰和侦察船仍按原速沿原方向继续航行,则航行途中侦察船能否侦察到这艘军舰?如果能,最早何时侦察到?如果不能,请说明理由。AB51.A北东B运动与方程快乐学习 4B52.回味无穷小结 拓展v列方程解应用题的一般步骤是:v1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?v2.设:设未知数,语句要完整,有单位(同一)的要注明单位;v3.列:列代数式,列方程;v4.解:解所列的方程;v5.验:是否是所列方程的根;是否符合题意;v6.答:答案也必需是完事的语句,注明单位且要贴近生活.v列方程解应用题的关键是:v找出相等关系.v关于两次平均增长(降低)率问题的一般关系:va(1x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)53.课前热身1:二中小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是a分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?分析:第三次第二次第一次aaX10%a+aX10%=a(1+10%)X10%a(1+10%)+a(1+10%)X10%=a(1+10%)2a(1+10%)54.课前热身2:某经济开发区今年一月份工业产值达50亿元,三月份产值为72亿元,问二月、三月平均每月的增长率是多少?解:设平均每月增长的百分率为 x,根据题意得方程为50(1+x)2=72 可化为:解得:答:二月、三月平均每月的增长率是20%20%55.例1:平阳按“九五”国民经济发展规划要求,2003年的社会总产值要比2001年增长21%,求平均每年增长的百分率(提示:基数为2001年的社会总产值,可视为a)设每年增长率为x,2001年的总产值为a,则2001年a2002年a(1+x)2003年a(1+x)2增长21%aa+21%aa(1+x)2=a+21%a分析:56.a(1+x)2=1.21 a (1+x)2=1.21 1+x=1.1 x=0.1解:设每年增长率为x,2001年的总产值为a,则a(1+x)2=a+21%a答:平均每年增长的百分率为10%57.练习1:某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%)解:设原价为1个单位,每次降价的百分率为 x.根据题意,得解这个方程,得 答:每次降价的百分率为29.3%.58.练习2:2:某药品两次升价,零售价升为原来的 1.21.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%0.1%)解,设原价为 元,每次升价的百分率为 ,根据题意,得解这个方程,得 由于升价的百分率不可能是负数,所以 不合题意,舍去答:每次升价的百分率为9.5%.9.5%.59.练习3.小红的妈妈前年存了5000元一年期的定期储蓄,到期后自动转存.今年到期扣除利息税(利息税为利息的20%),共取得5145元.求这种储蓄的年利率.(精确到0.1%)60.练习4.市第四中学初三年级初一开学时就参加课程改革试验,重视学生能力培养.初一阶段就有48人在市级以上各项活动中得奖,之后逐年增加,到三年级结束共有183人次在市级以上得奖.求这两年中得奖人次的平均年增长率.61.一元二次方程及应用题1、直角三角形问题:(勾股定理)2、体积不变性问题:3、数字问题:4、互赠礼物问题:5、增长率问题:62.典型练习题1、一个两位数个位数字比十位数字大1,个位数字与十位数字对调后所得的两位数比原数大9,求:这个两位数2、一件商品原价200元经过两次降价后162元,求:平均降价的百分比3、某班同学在圣诞节期间互赠礼物182件,求:这个班级的人数4、某校进行乒乓球单循环比赛,共比赛55场,问:共有多少名同学参加5、一名同学进行登山训练,上山速度为2千米/小时,下山速度为6千米/小时,求:往返一次的平均速度63.面积问题64.有关面积问题:常见的图形有下列几种:65.例1、用22cm长的铁丝,折成一个面积为30cm2的矩形。求这个矩形的长与宽.整理后,得x2-11x+30=0解这个方程,得x1=5,x2=6(与题设不符,舍去)答:这个矩形的长是6cm,宽是5cm。由x1=5得由x2=6,得解:设这个矩形的长为xcm,则宽为(cm).根据题意,得66.例2、在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为540米2,道路的宽应为多少?32m20m67.则横向的路面面积为,32m20mx米分析:此题的相等关系是矩形面积减去道路面积等于540米2。解法一、如图,设道路的宽为x米,32x米2纵向的路面面积为。20 x米2注意:这两个面积的重叠部分是x2米2所列的方程是不是?图中的道路面积不是米2,68.而是从其中减去重叠部分,即应是米2所以正确的方程是:化简得,其中的x=50超出了原矩形的长和宽,应舍去.取x=2时,道路总面积为:=100(米2)耕地面积=540(米2)答:所求道路的宽为2米。69.解法二:我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)70.横向路面为,32m20mxmxm如图,设路宽为x米,32x米2纵向路面面积为。20 x米2耕地矩形的长(横向)为,耕地矩形的宽(纵向)为。相等关系是:耕地长耕地宽=540米2(20-x)米(32-x)米即化简得:再往下的计算、格式书写与解法1相同。71.练习1:用一根长22厘米的铁丝,能否折成一个面积是30厘米的矩形?能否折成一个面积为32厘米的矩形?说明理由。2:在一块长80米,宽60米的运动场外围修筑了一条宽度相等的跑道,这条跑道的面积是1500平方米,求这条跑道的宽度。72.3.如图,在长为40米,宽为22米的矩形地面上,修筑两条同样宽的互相垂直的道路,余下的铺上草坪,要使草坪的面积为760平方米,道路的宽应为多少?40米22米73.4、如图,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(两条纵向,一条横向,横向与纵向相互垂直),把耕地分成大小相等的六块试验地,要使试验地面积为570m,问道路的宽为多少?74.例3、求截去的正方形的边长v用一块长28cm、宽 20cm的长方形纸片,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm,为了有效地利用材料,求截去的小正方形的边长是多少cm?75.求截去的正方形的边长v分析v设截去的正方形的边长为xcm之后,关键在于列出底面(图中阴影部分)长和宽的代数式结合图示和原有长方形的长和宽,不难得出这一代数式20-2x28-2xcm20cm 76.求截去的正方形边长v解:设截去的正方形的边长为xcm,根据题意,得(28-2x)(20-2x)=180 x2-24x+95=0解这个方程,得:x1=5,x2=19经检验:x219不合题意,舍去所以截去的正方形边长为cm.77.例4:建造一个池底为正方形,深度为2.5m的长方体无盖蓄水池,建造池壁的单价是120元/m2,建造池底的单价是240元/m2,总造价是8640元,求池底的边长.分析:池底的造价+池壁的造价=总造价解:设池底的边长是xm.根据题意得:解方程得:池底的边长不能为负数,取x=4答:池底的边长是4m.78.练习、建造成一个长方体形的水池,原计划水池深3米,水池周围为1400米,经过研讨,修改原方案,要把长与宽两边都增加原方案中的宽的2倍,于是新方案的水池容积为270万米3,求原来方案的水池的长与宽各是多少米?700-xx3700-x+2xx+2xx原方案新方案79.v课堂练习:列方程解下列应用题v1、学生会准备举办一次摄影展览,在每张长和宽分别为18厘米和12厘米的长方形相片周围镶嵌上一圈等宽的彩纸。经试验,彩纸面积为相片面积的2/3时较美观,求镶上彩纸条的宽。(精确到0.1厘米)v2、在宽20米,长32米的矩形地面上修筑同样宽的四条互相垂直的“井”字形道路(如图),余下的部分做绿地,要使绿地面积为448平方 米,路宽为多少?322080.v3、小明把一张边长为10厘米的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子。如果要求长方体的底面面积为81平方厘米,那么剪去的正方形边长为多少?81.4、学校课外生物(小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小路(如图),要使种植面积为600平方米,求小道的宽。(精确到0.1米)82.5、在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽。XX30cm20cm解:设长方形框的边宽为xcm,依题意,得3020(302x)(202x)=400整理得x225+100=0得x1=20,x2=5当=20时,20-2x=-20(舍去);当x=5时,20-2x=10答:这个长方形框的框边宽为5cm83.列一元二次方程解应题6、放铅笔的V形槽如图,每往上一层可以多放一支铅笔现有190支铅笔,则要放几层?解:要放x层,则每一层放(1+x)支铅笔.得x(1+x)=1902 X X 3800解得X119,X2 20(不合题意)答:要放19层.284.列一元二次方程解应题补充练习:(98年北京市崇文区中考题)如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米求鸡场的长和宽各多少米?85.通过这节课的学习:我学会了使我感触最深的是我发现生活中我还感到疑惑的是86.质点运动问题87.有关“动点”的运动问题”1)1)关键 以静代动 把动的点进行转换,变为线段的长度,2)2)方法 时间变路程 求“动点的运动时间”可以转化为求“动点的运动路程”,也是求线段的长度;由此,学会把动点的问题转化为静点的问题,是解这类问题的关键.3 3)常找的数量关系 面积,勾股定理等;88.例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发,几秒后 PBQ的面积等于8cm2?解:设x秒后 PBQ的面积等于8cm2根据题意,得整理,得解这个方程,得所以2秒或4秒后 PBQ的面积等于8cm289.例2:等腰直角 ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动,通过点P引平行于BC,AC的直线与AC,BC分别交于R、Q.当AP等于多少厘米时,平行四边形PQCR的面积等于16cm2?90.例3:ABC中,AB=3,BAC=45,CD AB,垂足为D,CD=2,P是AB上的一动点(不与A,B重合),且AP=x,过点P作直线l与AB垂直.i)设 ABC位于直线l左侧部分的面积为S,写出S与x之间的函数关系式;ii)当x为何值时,直线l平分 ABC的面积?91.例4:客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮,两船若同时起航,并同时到达折线A-B-C上的某点E处,已知AB=BC=200海里,ABC=90,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点()A.在线段AB上;B.在线段BC上;C.可以在线段AB上,也可以在线段BC上;92.ii)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)解:设货轮从出发到两船相遇共航行了x海里,过D作DF CB,交BD于F,则DE=x,AB+BE=2x,DF=100,EF=300-2x在Rt DEF 中,93.练习1:在ABC中,AC=50cm,CB=40cm,C=90,点P从点A开始沿AC边向点C以2cm/s的速度移动,同时另一点Q由C点以3cm/s的速度沿着CB边移动,几秒钟后,PCQ的面积等于450cm2?QBACP94.练习2:2:在直角三角形ABCABC中,AB=BC=12cm,AB=BC=12cm,点D D从点A A开始以2cm/s2cm/s的速度沿ABAB边向点B B移动,过点D D做DEDE平行于BC,DFBC,DF平行于AC,AC,点E.FE.F分别在AC,BCAC,BC上,问:点D D出发几秒后四边形DFCEDFCE的面积为20cm20cm2 2?F95.

    注意事项

    本文(一元二次方程与实际问题课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开