七年级数学一元一次方程应用题注意点.pdf
一元一次方程应用题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等 关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式 子,?然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出 未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,?是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量X增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.2圆柱体的体积公式V=底面积高=Sh=nr h长方体的体积V=长乂宽 高=abc5.市场经济问题(1)商品利润=商品售价一商品成本价(2)商品利润率=Xi。商品成本价(3)商品销售额=商品销售价x商品销售量(4)商品的销售利润=(销售价一成本价)X销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%B售.6.行程问题:路程=速度X时间时间=路程+速度速度=路程+时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.8.储蓄问题禾1润=每个期管的利息 X 100%本金利息=本金X利率X期数1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时 才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长 方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,兀=3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比 过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,?这种 三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.?已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一 共获利1440元,?求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千 瓦时,则超过部分按基本电价的70%攵费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获 利200元,?销售一台C种电视机可获利250元,在同时购进两种不同型号的 电视机方案中,为了使销售时获利最多,你选择哪种方案?答案1.解:设甲、乙一起做还需x小时才能完成工作.根据题意,得-X-+(-+-)x=1“、人、土62L1156 4解这个方程,得x=115,一 二2小时12分答:甲、乙一起做还需2小时12分才能完成工作.2.解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2X(9+x)=15+x18+2x=15+x.x=-3,2x-x=15-18答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的后具有相反意义的量)3.解:设圆柱形水桶的高为x毫米,依题意,得3年,是与3?年n ()x=300 X 300 X 8020022x=229.3答:圆柱形水桶的高约为229.3毫米.4.解:设第一铁桥的长为的时间为上分.x米,那么第二铁桥的长为(2x-50)米,?过完第一铁桥所需600、2x-5050过完第二铁桥所需的时间为依题意,可列出方程分.600 x+5 _ 2x-50600 60600解方程x+50=2x-50得x=100 2x-50=2 X 100-50=150答:第一铁桥长100米,第二铁桥长150米.5.解:设这种三色冰淇淋中咖啡色配料为那么红色和白色配料分别为根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=252x克,3x克和5x克.答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16X 5x+24X4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.7.解:(1)由题意,得0.4a+(84-a)X 0.40 X 70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40 X60+(x-60)X 0.40 X 70%=0.36x解得x=90所以0.36 X 90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500 x+2100(50-x)=90000即5x+7(50-x)=3002x=50 x=2550-x=25当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500 x+2500(50-x)=900003x+5(50-x)=1800 x=3550-x=15当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,电视机15台.(2)若选择(1)中的方案,可获利150 X 25+250X 15=8750(元)若选择(1)中的方案,可获利150 X 35+250X 15=9000(元)90008750故为了获利最多,选择第二种方案.C种