第八章 排序(书中第十章)(精品).ppt
10.1 概述概述10.2 插入排序插入排序10.3 快速排序快速排序10.4 堆排序堆排序10.5 归并排序归并排序10.1 概概 述述一、排序的定义一、排序的定义二、内部排序和外部排序二、内部排序和外部排序三、内部排序方法的分类三、内部排序方法的分类一、什么是排序?一、什么是排序?排序是计算机内经常进行的一种操作,其目的是将一组“无序无序”的记录序列调的记录序列调整为整为“有序有序”的记录序列。例如:将下列关键字序列52,49,80,36,14,58,61,23,97,75调整为14,23,36,49,52,58,61,75,80,97 一般情况下,假设含n个记录的序列为 R1,R2,,Rn 其相应的关键字序列为 K1,K2,,Kn 这些关键字相互之间可以进行比较,即在它们之间存在着这样一个关系:Kp1Kp2Kpn按此固有关系将上式记录序列重新排列为 Rp1,Rp2,,Rpn 的操作操作称作排序排序。二、内部排序和外部排序二、内部排序和外部排序若整个排序过程不需要访问外存不需要访问外存便能完成,则称此类排序问题为内部排内部排序序;反之,若参加排序的记录数量很大,整个序列的排序过程不可能在内存中 完成,则称此类排序问题为外部排序外部排序。三、内部排序的方法三、内部排序的方法内部排序的过程是一个逐步扩大逐步扩大记录的有序序列长度有序序列长度的过程。经过一趟排序经过一趟排序有序序列区无 序 序 列 区有序序列区无 序 序 列 区基于不同的“扩大扩大”有序序列长度的方法,内部排序方法方法,内部排序方法大致可分下列几种类型:插入类插入类交换类交换类选择类选择类 归并类归并类其它方法其它方法待排记录的数据类型定义如下待排记录的数据类型定义如下:#define MAXSIZE 1000/待排顺序表最大长度待排顺序表最大长度typedef int KeyType;/关键字类型为整数类型关键字类型为整数类型typedef struct KeyType key;/关键字项关键字项 InfoType otherinfo;/其它数据项其它数据项 RcdType;/记录类型记录类型typedef struct RcdType rMAXSIZE+1;/r0闲置闲置 int length;/顺序表长度顺序表长度 SqList;/顺序表类型顺序表类型1.插入类插入类将无序子序列中的一个或几个记录“插入插入”到有序序列中,从而增加记录的有序子序列的长度。2.交换类交换类通过“交换交换”无序序列中的记录从而得到其中关键字最小或最大的记录,并将它加入到有序子序列中,以此方法增加记录的有序子序列的长度。3.选择类选择类从记录的无序子序列中“选择”关键字最小或最大的记录,并将它加入到有序子序列中,以此方法增加记录的有序子序列的长度。4.归并类归并类通过“归并归并”两个或两个以上的记录有序子序列,逐步增加记录有序序列的长度。5.其它方法其它方法 10.2 插插 入入 排排 序序有序序列R1.i-1Ri无序序列 Ri.n一趟直接插入排序的基本思想:有序序列R1.i无序序列 Ri+1.n实现实现“一趟插入排序一趟插入排序”可分三步进行:可分三步进行:3将Ri 插入插入(复制)到Rj+1的位置上。2将Rj+1.i-1中的所有记录记录均后移后移 一个位置;1在R1.i-1中查找查找Ri的插入位置,R1.j.key Ri.key Rj+1.i-1.key;直接插入排序直接插入排序(基于顺序查找)(基于顺序查找)不同的具体实现方法导致不同的算法描述不同的具体实现方法导致不同的算法描述折半插入排序折半插入排序(基于折半查找)(基于折半查找)希尔排序希尔排序(基于逐趟缩小增量)(基于逐趟缩小增量)一、直接插入排序一、直接插入排序利用“顺序查找顺序查找”实现“在R1.i-1中查找查找Ri的插入位置”算法的实现要点:算法的实现要点:从Ri-1起向前进行顺序查找,监视哨设置在R0;R0=Ri;/设置“哨兵”循环结束表明Ri的插入位置为 j+1R0jRifor(j=i-1;R0.keyRj.key;-j);/从后往前找j=i-1插入位置插入位置 对于在查找过程中找到的那些关键字不小于Ri.key的记录,并在查找的同时实现记录向后移动;for(j=i-1;R0.keyRj.key;-j);Rj+1=RjR0jRij=i-1上述循环结束后可以直接进行“插入”插入位置插入位置令 i=2,3,,n,实现整个序列的排序。for(i=2;i=n;+i)if(Ri.keyRi-1.key)在 R1.i-1中查找Ri的插入位置;插入Ri;void InsertionSort(SqList&L)/对顺序表 L 作直接插入排序。for(i=2;i=L.length;+i)if(L.ri.key L.ri-1.key)/InsertSortL.r0=L.ri;/复制为监视哨for(j=i-1;L.r0.key L.rj.key;-j)L.rj+1=L.rj;/记录后移L.rj+1=L.r0;/插入到正确位置内部排序的时间分析时间分析:实现内部排序的基本操作基本操作有两个:(2)“移动移动”记录。(1)“比较比较”序列中两个关键字的 大小;对于直接插入排序:最好的情况(关键字在记录序列中顺序有序):最好的情况(关键字在记录序列中顺序有序):“比较”的次数:最坏的情况(关键字在记录序列中逆序有序):最坏的情况(关键字在记录序列中逆序有序):“比较”的次数:0“移动”的次数:“移动”的次数:因为 R1.i-1 是一个按关键字有序的有序序列,则可以利用折半查找折半查找实现“在R1.i-1中查找查找Ri的插入位置”,如此实现的插入排序为折半插折半插入入排序。二、折半插入排序二、折半插入排序void BiInsertionSort(SqList&L)/BInsertSort在在 L.r1.i-1中折半查找插入位置;中折半查找插入位置;for(i=2;i=high+1;-j)L.rj+1=L.rj;/记录后移L.rhigh+1=L.r0;/插入low=1;high=i-1;while(low=high)m=(low+high)/2;/折半if(L.r0.key L.rm.key)high=m-1;/插入点在低半区else low=m+1;/插入点在高半区14 36 49 52 80 58 61 23 97 75ilowhighmmlowlowmhigh14 36 49 52 58 61 80 23 97 75ilowhighmhighmhighmlow例如:再如:插入位置插入位置L.rL.r 三三、希尔排序(又称缩小增量排序)希尔排序(又称缩小增量排序)基本思想:对待排记录序列先作“宏观”调整,再作“微观”调整。所谓“宏观”调整,指的是,“跳跃式”的插入排序。具体做法为:将记录序列分成若干子序列,分别对每个子序列进行插入排序。其中,d 称为增量,它的值在排序过程中从大到小逐渐缩小,直至最后一趟排序减为 1。例如:将 n 个记录分成 d 个子序列:R1,R1+d,R1+2d,R1+kd R2,R2+d,R2+2d,R2+kd Rd,R2d,R3d,Rkd,R(k+1)d 例如:16 25 12 30 47 11 23 36 9 18 31 第一趟希尔排序,设增量 d=511 23 12 9 18 16 25 36 30 47 31 第二趟希尔排序,设增量 d=39 18 12 11 23 16 25 31 30 47 36第三趟希尔排序,设增量 d=1 9 11 12 16 18 23 25 30 31 36 47 void ShellInsert(SqList&L,int dk)for(i=dk+1;i=n;+i)if(L.ri.key0&(L.r0.keyL.rj.key);j-=dk)L.rj+dk=L.rj;/记录后移,查找插入位置 L.rj+dk=L.r0;/插入 /if/ShellInsertvoid ShellSort(SqList&L,int dlta,int t)/增量为dlta的希尔排序 for(k=0;k1)/while/BubbleSorti=n;i=lastExchangeIndex;/本趟进行过交换的 /最后一个记录的位置 if(Rj+1.key Rj.key)Swap(Rj,Rj+1);lastExchangeIndex=j;/记下进行交换的记录位置 /iffor(j=1;j i;j+)lastExchangeIndex=1;注意注意:2.一般情况下,每经过一趟“起泡”,“i 减一”,但并不是每趟都如此。例如例如:25531579 89i=7i=6for(j=1;j i;j+)if(Rj+1.key Rj.key)13i=21.起泡排序的结束条件为,最后一趟没有进行最后一趟没有进行“交换记录交换记录”。时间分析时间分析:最好的情况(关键字在记录序列中顺序有序):最好的情况(关键字在记录序列中顺序有序):只需进行一趟起泡只需进行一趟起泡“比较比较”的次数:的次数:最坏的情况(关键字在记录序列中逆序有序):最坏的情况(关键字在记录序列中逆序有序):需进行需进行n-1趟起泡趟起泡“比较比较”的次数:的次数:0“移动移动”的次数:的次数:“移动移动”的次数:的次数:n-1二、一趟快速排序(一次划分)二、一趟快速排序(一次划分)目标:目标:找一个记录,以它的关键字作为“枢轴枢轴”,凡其关键字小于枢轴关键字小于枢轴的记录均移动至该记录之前移动至该记录之前,反之,凡关键字大于关键字大于枢轴枢轴的记录均移动至该记录之后移动至该记录之后。致使一趟排序一趟排序之后,记录的无序序列Rs.t将分割成两部分分割成两部分:Rs.i-1和Ri+1.t,且 Rj.key Ri.key Rj.key (sji-1)枢轴枢轴 (i+1jt)。stlowhigh设设 Rs=52 为枢轴为枢轴 将 Rhigh.key 和 枢轴的关键字进行比较,要求Rhigh.key 枢轴的关键字 将 Rlow.key 和 枢轴的关键字进行比较,要求Rlow.key 枢轴的关键字high23low80high14low52例如例如R052lowhighhighhighlow 可见,经过“一次划分一次划分”,将关键字序列 52,49,80,36,14,58,61,97,23,75 调整为:23,49,14,36,(52)58,61,97,80,75 在调整过程中,设立了两个指针:low 和high,它们的初值分别为:s 和 t,之后逐渐减小 high,增加 low,并保证 Rhigh.key52,和 Rlow.key52,否则进行记录的“交换”。int Partition(RedType&R,int low,int high)pivotkey=Rlow.key;while(lowhigh)while(low=pivotkey)-high;RlowRhigh;while(lowhigh&Rlow.key=pivotkey)+low;RlowRhigh;return low;/返回枢轴所在位置/Partitionint Partition(RedType R,int low,int high)/Partition R0=Rlow;pivotkey=Rlow.key;/枢轴 while(lowhigh)while(low=pivotkey)-high;/从右向左搜索Rlow=Rhigh;while(lowhigh&Rlow.key=pivotkey)+low;/从左向右搜索Rhigh=Rlow;Rlow=R0;return low;三、快速排序三、快速排序 首先对无序的记录序列进行“一次划分一次划分”,之后分别分别对分割所得两个子序列“递归递归”进行快速排序进行快速排序。无 序 的 记 录 序 列无序记录子序列(1)无序子序列(2)枢轴枢轴一次划分分别进行快速排序void QSort(RedType&R,int s,int t)/对记录序列Rs.t进行快速排序 if(s t-1)/长度大于1 /QSortpivotloc=Partition(R,s,t);/对 Rs.t 进行一次划分一次划分QSort(R,s,pivotloc-1);/对低子序列递归排序,pivotloc是枢轴位置是枢轴位置QSort(R,pivotloc+1,t);/对高子序列递归排序void QuickSort(SqList&L)/对顺序表进行快速排序 QSort(L.r,1,L.length);/QuickSort 第一次调用函数 Qsort 时,待排序记录序列的上、下界分别为 1 和 L.length。快速排序的时间复杂度为快速排序的时间复杂度为O(nlogn)10.4 堆堆 排排 序序简简 单单 选选 择择 排排 序序堆堆 排排 序序一、简单选择排序一、简单选择排序假设排序过程中,待排记录序列的状态为:有序序列R1.i-1无序序列 Ri.n 第 i 趟简单选择排序从中选出关键字最小的记录有序序列R1.i无序序列 Ri+1.n简单选择排序的算法描述如下:void SelectSort(Elem R,int n)/对记录序列R1.n作简单选择排序。for(i=1;i0;-i)HeapAdjust(H.r,i,H.length);/建大顶堆for(i=H.length;i1;-i)H.r1H.ri;/将堆顶记录和当前未经排序子序列 /H.r1.i中最后一个记录相互交换 HeapAdjust(H.r,1,i-1);/对 H.r1 进行筛选如何如何“建堆建堆”?两个问题两个问题:如何如何“筛选筛选”?定义堆类型为定义堆类型为:typedef SqList HeapType;/堆采用顺序表表示之所谓“筛选筛选”指的是,对一棵左/右子树均为堆的完全二叉树,“调整调整”根结根结点点使整个二叉树也成为一个堆。堆堆筛筛选选98814973556412362740例如例如:是大顶堆是大顶堆12但在 98 和 12 进行互换之后,它就不不是堆了,因此,需要对它进行“筛选”。98128173641298比较比较比较void HeapAdjust(RcdType&R,int s,int m)/已知 Rs.m中记录的关键字除 Rs 之外均 /满足堆的特征,本函数自上而下调整 Rs 的 /关键字,使 Rs.m 也成为一个大顶堆/HeapAdjustrc=Rs;/暂存 Rs for(j=2*s;j=Rj.key)break;/再作“根”和“子树根”之间的比较,/若“=”成立,则说明已找到 rc 的插 /入位置 s,不需要继续往下调整Rs=Rj;s=j;/否则记录上移,尚需继续往下调整if(jm&Rj.keyRj+1.key)+j;/左/右“子树根”之间先进行相互比较 /令 j 指示关键字较大记录的位置建堆是一个从下往上进行建堆是一个从下往上进行“筛选筛选”的过程。的过程。40554973816436122798例如例如:排序之前的关键字序列为123681734998817355 现在,左/右子树都已经调整为堆,最后只要调整根结点,使整个二叉树是个“堆”即可。98494064361227堆排序的时间复杂度为O(nlogn)。10.5 归归 并并 排排 序序归并排序的过程基于下列基本思想基本思想进行:将两个或两个以上的有序子序列“归并”为一个有序序列。在内部排序中,通常采用的是2-路归并排序。即:将两个位置相邻位置相邻的记录有序子序列归并为一个一个记录的有序序列。有有 序序 序序 列列 Rl.n有序子序列有序子序列 Rl.m有序子序列有序子序列 Rm+1.n这个操作对顺序表而言,是轻而易举的。void Merge(RcdType SR,RcdType&TR,int i,int m,int n)/将有序的记录序列 SRi.m 和 SRm+1.n /归并为有序的记录序列 TRi.n/Mergefor(j=m+1,k=i;i=m&j=n;+k)/将SR中记录由小到大地并入TR if(SRi.key=SRj.key)TRk=SRi+;else TRk=SRj+;if(i=m)TRk.n=SRi.m;/将剩余的 SRi.m 复制到 TRif(j=n)TRk.n=SRj.n;/将剩余的 SRj.n 复制到 TR归并排序的算法归并排序的算法如果记录无序序列 Rs.t 的两部分 Rs.(s+t)/2 和 R(s+t)/2+1.t分别按关键字有序,则利用上述归并算法很容易将它们归并成整个记录序列是一个有序序列。由此,应该先分别对这两部分进行 2-路归并排序。例如:例如:52,23,80,36,68,14 (s=1,t=6)52,23,80 36,68,14 52,2380 52 23,52 23,52,8036,6814366836,6814,36,68 14,23,36,52,68,80 23void Msort(RcdType SR,RcdType&TR1,int s,int t)/将SRs.t 归并排序为 TR1s.t if(s=t)TR1s=SRs;else /Msort m=(s+t)/2;/将SRs.t平分为SRs.m和SRm+1.tMsort(SR,TR2,s,m);/递归地将SRs.m归并为有序的TR2s.mMsort(SR,TR2,m+1,t);/递归地SRm+1.t归并为有序的TR2m+1.tMerge(TR2,TR1,s,m,t);/将TR2s.m和TR2m+1.t归并到TR1s.tvoid MergeSort(SqList&L)/对顺序表 L 作2-路归并排序 MSort(L.r,L.r,1,L.length);/MergeSort容易看出,对 n 个记录进行归并排序的时间复杂度为(nlogn)。即:每一趟归并的时间复杂度为 O(n),总共需进行 log2n 趟。