西方经济学高鸿业第五版(宏观+微观)课后习题答案.pdf.pdf
第二章练习题参考答案1.已知某一时期内某商品的需求函数为 Qd=50-5P,供给函数为 Qs=-10+5p。(1) 求均衡价格Pe 和均衡数量Qe ,并作出几何图形。(2) 假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。求出相 应的均衡价格Pe 和均衡数量Qe,并作出几何图形。(3) 假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p。求出相应 的均衡价格Pe 和均衡数量Qe,并作出几何图形。(4) 利用( 1)( 2)( 3),说明静态分析和比较静态分析的联系和区别。(5) 利用( 1)( 2)( 3),说明需求变动和供给变动对均衡价格和均衡数量的影响. 解答 :(1)将需求函数Qd=50-5P 和供给函数Qs=-10+5P 代入均衡条件Qd=Qs, 有: 50-5P=-10+5P得: Pe=6 以均衡价格Pe=6 代入需求函数Qd=50-5p ,得:Qe=50-5*6=20 或者 ,以均衡价格Pe =6 代入供给函数Qe=-10+5P ,得:Qe=-10+5 所以 ,均衡价格和均衡数量分别为Pe =6 , Qe=20 .如图1-1 所示 . (2) 将由于消费者收入提高而产生的需求函数 Qd=60-5p 和原供给函数 Qs=-10+5P, 代入均衡条件Qd=Qs,有: 60-5P=-10=5P得Pe=7 以均衡价格Pe=7 代入Qs=60-5p ,得 Qe=60-5*7=25 或者 ,以均衡价格Pe=7 代入Qs=-10+5P, 得 Qe=-10+5*7=25 所以 ,均衡价格和均衡数量分别为Pe=7,Qe=25 (3) 将原需求函数 Qd=50-5p 和由于技术水平提高而产生的供给函数 Qs=-5+5p ,代入均衡条件Qd=Qs,有: 50-5P=-5+5P 得Pe=5.5以均衡价格Pe=5.5 代入 Qd=50-5p ,得Qe=50-5*5.5=22.5 或者 ,以均衡价格Pe=5.5 代入Qd=-5+5P ,得 Qe=-5+5*5.5=22.5 所以 ,均衡价格和均衡数量分别为Pe=5.5, Qe=22.5.如图1-3 所示 . (4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说 ,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例 ,在图 1-1 中 ,均衡点 E 就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此 ,给定的供求力量分别用给定的供给函数Qs=-10+5P 和需求函数 Qd=50-5p 表示 ,均衡点 E 具有的特征是:均衡价格 Pe=6 且当 Pe=6 时, 有 Qd=Qs=Qe=20;同时 ,均衡数量Qe=20,切当Qe=20 时,有 Pd=Ps=Pe. 也可以这样来理解静态分析:在外生变量包括需求函数的参数(50,-5)以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分别为Pe=6,Qe=20依此类推 ,以上所描素的关于静态分析的基本要点,在 (2)及其图1-2 和(3)及其图1-3 中的每一个单独的均衡点Ei(1,2)都得到了体现.而所谓的比较静态分析是考察当所有的条件发生变化时,原有的均衡状态会发生什么变化,并分析比较新旧均衡状态.也可以说 ,比较静态分析是考察在一个经济模型中外生变量变化时对内生变量的影响 ,并分析比较由不同数值的外生变量所决定的内生变量的不同数值,以(2)为例加以说明.在图1-2 中,由均衡点变动到均衡点,就是一种比较静态分析.它表示当需求增加即需求函数发生变化时对均衡点的影响.很清楚 ,比较新 .旧两个均衡点和 可以看到 :由于需求增加由 20 增加为25.也可以这样理解比较静态分析:在供给函数保持不变的前提下,由于需求函数中的外生变量发生变化,即其中一个参数值由50 增加为60,从而使得内生变量的数值发生变化,其结果为 ,均衡价格由原来的6 上升为7,同时 ,均衡数量由原来的20 增加为25. 类似的 ,利用 (3)及其图1-3 也可以说明比较静态分析方法的基本要求. (5)由 (1)和(2)可见 ,当消费者收入水平提高导致需求增加,即表现为需求曲线右移时,均衡价格提高了 ,均衡数量增加了. 由(1)和(3)可见 ,当技术水平提高导致供给增加,即表现为供给曲线右移时,均衡价格下降了,均衡数量增加了. 总之 ,一般地有 ,需求与均衡价格成同方向变动,与均衡数量成同方向变动;供给与均衡价格成反方向变动 ,与均衡数量同方向变动.2 假定表 2 5 是需求函数 Qd=500-100P 在一定价格范围内的需求表:某商品的需求表价格(元)1 2 3 4 5 需求量400 300 200 100 0 (1)求出价格2 元和4 元之间的需求的价格弧弹性。(2)根据给出的需求函数,求P=2 是的需求的价格点弹性。(3)根据该需求函数或需求表作出相应的几何图形,利用几何方法求出P=2 时的需求的价 格点弹性。它与(2)的结果相同吗?解( 1)根据中点公式有: ed=(200/2)(2+4)/(2)/(300+100)/(2)=1.5 (2)由于当P=2 时, Qd=500-100*2=300 ,所以,有:=-( -100)*(2/3)=2/3 (3)根据图1-4 在 a 点即, P=2 时的需求的价格点弹性为:或者显然,在此利用几何方法求出P=2 时的需求的价格弹性系数和(2)中根据定义公式求出结 果是相同的,都是ed=2/3。3 假定下表是供给函数 Qs=-2+2P 在一定价格范围内的供给表。某商品的供给表价格(元)2 3 4 5 6 供给量2 4 6 8 10 (1) 求出价格3 元和5 元之间的供给的价格弧弹性。(2) 根据给出的供给函数,求P=3 时的供给的价格点弹性。(3)根据该供给函数或供给表作出相应的几何图形,利用几何方法求出P=3 时的供给的价格点弹性。它与(2)的结果相同吗?解(1) 根据中点公式有:es=4/3 (2) 由于当 P=3 时, Qs=-2+2,所以=2*(3/4)=1.5 (3) 根据图 1-5,在 a 点即 P=3 时的供给的价格点弹性为: es=AB/OB=1.5 显然,在此利用几何方法求出的P=3 时的供给的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是Es=1.5 4 图 1-6 中有三条线性的需求曲线 AB、AC、AD。(1)比较a、b、c 三点的需求的价格点弹性的大小。(2)比较a、f、e 三点的需求的价格点弹性的大小。解 (1)根据求需求的价格点弹性的几何方法,可以很方便地推知 :分别处于不同的线性需求曲线上的a、b、e 三点的需求的价格点弹性是相等的.其理由在于 ,在这三点上 ,都有 : (2)根据求需求的价格点弹性的几何方法, 同样可以很方便地推知: 分别处于三条线性需求曲线上的 a.e.f 三点的需求的价格点弹性是不相等的, 且有EdaEdfEde 其理由在于 : 在 a 点有, Eda=GB/OG 在 f 点有, Edf=GC/OG 在 e 点有, Ede=GD/OG 在以上三式中, 由于 GBGCGD 所以 EdaEdf0 为常数 )时,则无论收入M 为多少 ,相应的需求的点弹性恒等于1/2. 6假定需求函数为Q=MP-N,其中M表示收入, P 表示商品价格,N(N0)为常数。求:需求的价格点弹性和需求的收入点弹性。解 由以知条件可得 :由此可见 ,一般地 ,对于幂指数需求函数Q(P)= MP-N而言 ,其需求的价格价格点弹性总等于幂指数的绝对值N.而对于线性需求函数Q(P)= MP-N而言 ,其需求的收入点弹性总是等于1. 7 假定某商品市场上有 100 个消费者,其中,60 个消费者购买该市场 1/3 的商品,且每个消费者的需求的价格弹性均为3:另外40 个消费者购买该市场2/3的商品,且每个消费者的需求的价格弹性均为6。求:按100 个消费者合计的需求的价格弹性系数是多少?解: 另在该市场上被100 个消费者购得的该商品总量为Q,相应的市场价格为P。根据题意 , 该市场的1/3的商品被60 个消费者购买,且每个消费者的需求的价格弹性都是3,于是 ,单个消费者i 的需求的价格弹性可以写为; Edi=-(dQi/dP) 即 dQi/dP=-3P/Q2(i=1,2 60)(1) 且(2) 相类似的 ,再根据题意 ,该市场1/3的商品被另外40 个消费者购买 ,且每个消费者的需求的价格弹性都是6,于是 ,单个消费者j 的需求的价格弹性可以写为 :Edj=-(dQ/dP)*(P/Q)=6 即dQj/dP=-6Qj/P(j=1,2 40)(3) 且(4) 此外 ,该市场上100 个消费者合计的需求的价格弹性可以写为 : 60 40 dQ P d(QiQj ) Edi 1 j 1 dP Q dP P 60 dQ 40 dQj P (i ) Q dP dP Q i 1 j 1 将( 1)式、( 3)式代入上式,得:60 Q 40 Qj P 3 60 6 40 P Ed( 3 i ) ( 6 )Qi QjP P Q P Q i 1 j 1 P i 1 j 1 再将( 2)式、( 4)式代入上式,得:Ed(P3 Q3P6 23Q)QPQP( 14)QP5 所以,按100 个消费者合计的需求的价格弹性系数是5。8 假定某消费者的需求的价格弹性Ed=1.3,需求的收入弹性 Em=2.2 。求:( 1)在其他条件不变的情况下,商品价格下降2%对需求数量的影响。(2)在其他条件不变的情况下,消费者收入提高 5%对需求数量的影响。Q 解(1) 由于题知EdQ ,于是有 : P P Q E P (1.3) ( 2%) 2.6% Q d P 所以当价格下降2%时 ,商需求量会上升 2.6%. (2)由于Em= QEmMQ M Q EmQ,于是有 : M M (2.2) (5%) 11% 即消费者收入提高5%时,消费者对该商品的需求数量会上升11%。9 假定某市场上 A、B 两厂商是生产同种有差异的产品的竞争者;该市场对 A 厂商的需求曲线为PA=200-QA,对B 厂商的需求曲线为PB=300-0.5QB ;两厂商目前的销售情况分别为QA=50,QB=100。求:( 1)A、B 两厂商的需求的价格弹性分别为多少?(2)如果B 厂商降价后,使得B 厂商的需求量增加为QB=160,同时使竞争对手A 厂商的需求量减少为QA=40。那么, A 厂商的需求的交叉价格弹性EAB 是多少?(3)如果B 厂商追求销售收入最大化,那么,你认为B 厂商的降价是一个正确的选择吗?解( 1)关于A 厂商 :由于PA=200-50=150 且 A 厂商的需求函数可以写为; QA=200-PA 于是EdAdQA P ( 1) 150 3 A dPA QA 50 关于B 厂商 :由于PB=300-0.5100=250且 B 厂商的需求函数可以写成: QB=600-PB 于是 ,B 厂商的需求的价格弹性为:EdBdQB P ( 2) 250 5 B dPB QB 100 (2) 当 QA1=40 时, PA1=200-40=160 且QA110 当 PB1=300-0.5 160=220 且PB130 所以EABQA1PB 1 10 250 5 QA1 30 PB1 50 3 (4)由 (1)可知 ,B 厂商在PB=250 时的需求价格弹性为EdB=5, 也就是说 ,对于厂商的需求是富有弹性的 .我们知道 ,对于富有弹性的商品而言,厂商的价格和销售收入成反方向的变化,所以,B 厂商将商品价格由PB=250 下降为PB1=220,将会增加其销售收入.具体地有 : 降价前 ,当 PB=250 且 QB=100 时,B 厂商的销售收入为: TRB=PB QB=250100=25000 降价后 ,当 PB1=220 且 QB1=160 时,B 厂商的销售收入为: TRB1=PB1 QB1=220160=35200 显然 , TRB 1 时,在a 点的销售收入PQ 相当于面积OP1aQ1, b 点的销售收入PQ相当于面积OP2bQ2.显然,面积OP1aQ1 面积OP2bQ2。所以当Ed1 时,降价会增加厂商的销售收入,提价会减少厂商的销售收入,即商品的价格 与厂商的销售收入成反方向变动。例:假设某商品Ed=2,当商品价格为2 时,需求量为20。厂商的销售收入为2 20=40。当商品的价格为2.2,即价格上升10%,由于Ed=2,所以需求量相应下降20%,即下降为16。 同时,厂商的销售收入=2.21.6=35.2 。显然,提价后厂商的销售收入反而下降了。b) 当 Ed 1 时,在a 点的销售收入PQ 相当于面积OP1aQ1, b 点的销售收入PQ相当于面积OP2bQ2.显然,面积OP1aQ1 面积OP2bQ2。所以当Ed1 时,降价会减少厂商的销售收入,提价会增加厂商的销售收入,即商品的价格与厂商的销售收入成正方向变动。例:假设某商品Ed=0.5,当商品价格为2 时,需求量为20。厂商的销售收入为220=40。当商品的价格为2.2,即价格上升10%,由于Ed=0.5,所以需求量相应下降5%,即下降为19。同时,厂商的销售收入=2.21.9=41.8。显然,提价后厂商的销售收入上升了。c) 当 Ed=1 时,在 a 点的销售收入 PQ 相当于面积 OP1aQ1, b 点的销售收入 PQ 相当于面积OP2bQ2.显然,面积OP1aQ1= 面积OP2bQ2。所以当Ed=1 时,降低或提高价格对厂商的销售收入没有影响。例:假设某商品Ed=1,当商品价格为2 时,需求量为20。厂商的销售收入为2 20=40。当商品的价格为2.2,即价格上升10%,由于Ed=1,所以需求量相应下降10%,即下降为18。同时,厂商的销售收入=2.2 1.8=39.640。显然,提价后厂商的销售收入并没有变化。12 利用图简要说明微观经济学的理论体系框架和核心思想。解:要点如下 : (1) 关于微观经济学的理论体系框架. 微观经济学通过对个体经济单位的经济行为的研究,说明现代西方经济社会市场机制的运行和作用 ,以及这种运行的途径,或者 ,也可以简单的说,微观经济学是通过对个体经济单位的研究来说明市场机制的资源配置作用的. 市场机制亦可称价格机制,其基本的要素是需求,供给和均衡价格 . 以需求 ,供给和均衡价格为出发点,微观经济学通过效用论研究消费者追求效用最大化的行为, 并由此推导出消费者的需求曲线,进而得到市场的需求曲线.生产论 .成本论和市场论主要研究生产者追求利润最大化的行为,并由此推导出生产者的供给曲线, 进而得到市场的供给曲线.运用市场的需求曲线和供给曲线,就可以决定市场的均衡价格,并进一步理解在所有的个体经济单位追求各自经济利益的过程中,一个经济社会如何在市场价格机制的作用下,实现经济资源的配置.其中 ,从经济资源配置的效果讲,完全竞争市场最优,垄断市场最差 ,而垄断竞争市场比较接近完全竞争市场,寡头市场比较接近垄断市场.至此 ,微观经济学便完成了对图1-8 中上半部分所涉及的关于产品市场的内容的研究.为了更完整地研究价格机制对资源配置的作用 ,市场论又将考察的范围从产品市场扩展至生产要素市场. 生产要素的需求方面的理论, 从生产者追求利润最大的化的行为出发,推导生产要素的需求曲线; 生产要素的供给方面的理论 , 从消费者追求效用最大的化的角度出发, 推导生产要素的供给曲线.据此 ,进一步说明生产要素市场均衡价格的决定及其资源配置的效率问题.这样 ,微观经济学便完成了对图1-8 中下半部分所涉及的关于生产要素市场的内容的研究. 在以上讨论了单个商品市场和单个生产要素市场的均衡价格决定及其作用之后,一般均衡理论讨论了一个经济社会中所有的单个市场的均衡价格决定问题,其结论是 : 在完全竞争经济中,存在着一组价格(P1.P2.Pm),使得经济中所有的N 个市场同时实现供求相等的均衡状态. 这样 ,微观经济学便完成了对其核心思想即看不见的手原理的证明. 在上面实现研究的基础上,微观经济学又进入了规范研究部分,即福利经济学.福利经济学的一个主要命题是:完全竞争的一般均衡就是帕累托最优状态.也就是说 ,在帕累托最优的经济效率的意义上,进一步肯定了完全竞争市场经济的配置资源的作用. 在讨论了市场机制的作用以后,微观经济学又讨论了市场失灵的问题.为了克服市场失灵产生的主要原因包括垄断.外部经济 .公共物品和不完全信息. 为了克服市场失灵导致的资源配置的无效率 ,经济学家又探讨和提出了相应的微观经济政策。(2) 关于微观经济学的核心思想。微观经济学的核心思想主要是论证资本主义的市场经济能够实现有效率的资源配置。通过用英国古典经济学家亚当斯密在其1776 年出版的国民财富的性质和原因的研究一书中提出的、以后又被称为“看不见的手”原理的那一段话,来表述微观经济学的核心思想2 原文为:“每个人力图应用他的资本,来使其产品能得到最大的价值。一般地说,他并不企 图增进增加公共福利,也不知道他所增进的公共福利为多少。他所追求的仅仅是他个人的安乐,仅仅是他个人的利益。在这样做时,有一只看不见的手引导他去促进一种目标,而这种目标绝不是他所追求的东西。由于他追逐他自己的利益,他经常促进了社会利益,其效果要比其他真正促进社会利益时所得到的效果为大。第三章练习题参考答案1、已知一件衬衫的价格为 80 元,一份肯德鸡快餐的价格为 20 元,在某消费者关于这两种商品的效用最大化的均衡点上,一份肯德鸡快餐对衬衫的边际替代率MRS 是多少?解:按照两商品的边际替代率MRS 的定义公式 ,可以将一份肯德鸡快餐对衬衫的边际替代率写成 :MSRXYY X 其中 :X 表示肯德鸡快餐的份数;Y 表示衬衫的件数; MRS 表示在维持效用水平不变的前提下,消费者增加一份肯德鸡快餐时所需要放弃的衬衫消费数量。在该消费者实现关于这两件商品的效用最大化时,在均衡点上有MRSxy =Px/Py 即有MRSxy =20/80=0.25 它表明:在效用最大化的均衡点上,消费者关于一份肯德鸡快餐对衬衫的边际替代率MRS 为 0.25。2 假设某消费者的均衡如图 1-9 所示。其中,横轴 OX1 和纵轴 OX2,分别表示商品 1 和商品2 的数量,线段 AB 为消费者的预算线,曲线 U 为消费者的无差异曲线,E 点为效用最大化的均衡点。已知商品1 的价格P1=2 元。(1)求消费者的收入;(2)求上品的价格 P2;(3)写出预算线的方程;(4)求预算线的斜率;(5)求 E 点的 MRS12 的值。解:( 1)图中的横截距表示消费者的收入全部购买商品1 的数量为30 单位,且已知P1=2 元,所以,消费者的收入M=2 元 30=60 。(2)图中的纵截距表示消费者的收入全部购买商品2 的数量为20 单位,且由(1)已知收入M=60元,所以,商品2 的价格P2 斜率 =P1/P2=2/3 ,得P2=M20=3 元(3)由于预算线的一般形式为:P1X1+P2X2=M 所以,由( 1)、( 2)可将预算线方程具体写为2X1+3X2=60。(4)将( 3)中的预算线方程进一步整理为X2=-2/3 X1+20。很清楚,预算线的斜率为2/3 。(5)在消费者效用最大化的均衡点E 上,有MRS12= = MRS12=P1/P2,即无差异曲线的斜率的绝对值即MRS 等于预算线的斜率绝对值P1/P2 。因此,在MRS12=P1/P2 = 2/3 。3 请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线,同时请对(2)和(3) 分别写出消费者B 和消费者C 的效用函数。(1)消费者A 喜欢喝咖啡,但对喝热茶无所谓。他总是喜欢有更多杯的咖啡,而从不在意 有多少杯的热茶。(2)消费者B 喜欢一杯咖啡和一杯热茶一起喝,他从来不喜欢单独只喝咖啡,或者只不喝 热茶。(3)消费者C 认为,在任何情况下,1 杯咖啡和2 杯热茶是无差异的。(4)消费者D 喜欢喝热茶,但厌恶喝咖啡。解答:( 1)根据题意,对消费者A 而言,热茶是中性商品,因此,热茶的消费数量不会影 响消费者A 的效用水平。消费者A 的无差异曲线见图( 2) 根 据 题 意 , 对 消 费 者B 而 言 , 咖 啡 和 热 茶 是 完 全 互 补 品 , 其 效 用 函 数 是U=min X1、 X2。消费者 B 的无差异曲线见图(3)根据题意,对消费者C 而言,咖啡和热茶是完全替代品,其效用函数是U=2 X1+ X2。 消费者C 的无差异曲线见图(4)根据题意,对消费者D 而言,咖啡是厌恶品。消费者D 的无差异曲线见图4 已知某消费者每年用于商品1 和的商品2 的收入为540 元,两商品的价格分别为P1=20 元 和P2=30 元,该消费者的效用函数为U3X1X22,该消费者每年购买这两种商品的数量应各是多少?从中获得的总效用是多少?解:根据消费者的效用最大化的均衡条件:MU1/MU2=P1/P2 其中,由U3X1X22可得:MU1=dTU/dX1 =3X22 MU2=dTU/dX2 =6X1X2 于是,有:3X22 / 6 X1X2 20 / 30 (1) 整理得将( 1)式代入预算约束条件20X1+30X2=540,得: X1=9,X2=12 因此,该消费者每年购买这两种商品的数量应该为:U3X1X223888 5、假设某商品市场上只有 A、 B 两个消费者,他们的需求函数各自为QAd204P和QBd305P 。(1)列出这两个消费者的需求表和市场需求表;根据(1),画出这两个消费者的需求曲线和市场需求曲线。解:( 1)A 消费者的需求表为:P 0 1 2 3 4 5 QAd 20 16 12 8 4 0 B 消费者的需求表为:P 0 1 2 3 4 5 6 QBd 30 25 20 15 10 5 0 市场的需求表为:P 0 1 2 3 4 5 6 Qd 50 41 32 23 14 5 0 (2)A 消费者的需求曲线为:图略 B 消费者的需求曲线为:图略市场的需求曲线为:图略35 6、假定某消费者的效用函数为Ux18x28,两商品的价格分别为 P1,P2,消费者的收入为M。分别求出该消费者关于商品 1 和商品 2 的需求函数。 解答:根据消费者效用最大化的均衡条件:MU1/MU2=P1/P2 35 其中,由以知的效用函数Ux18x28可得:dTU 35 5 MU x 8 x8 dx 8 1 1 2 1 dTU 5 3 3 MU x 8x 8 dx2 8 2 1 2 3 55 8 x 8 x 8 P1 于是,有:1 2 3 3 P2 5x8 x 8 8 1 2整理得:3x2 P1 5x1P2 即有x25 p1x1 (1)3 p2 P x P 5P1x1 M 3P 一(1)式代入约束条件P1X1+P2X2=M ,有:1 1 2 2 解得:x13M 8P1 代入( 1)式得x25M 8P2 所以,该消费者关于两商品的需求函数为x 3M x 2 5M 1 8P1 8P2 7、令某消费者的收入为 M,两商品的价格为 P1,P2。假定该消费者的无差异曲线是线性的, 切斜率为 -a。求:该消费者的最优商品组合。解:由于无差异曲线是一条直线,所以该消费者的最优消费选择有三种情况,其中的第一、第二种情况属于边角解。第一种情况:当MRS12P1/P2 时,即a P1/P2 时,如图,效用最大的均衡点E 的位置发生在横轴,它表示此时的最优解是一个边角解,即X1=M/P1 ,X2=0。也就是说,消费者将全部的收入都购买商品1,并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。第二种情况:当MRS12P1/P2 时, aAPL 时, APL 曲线是上升的。当 MPL=5 才生产,而P5 时必定会停产,所以,该厂商的短期供给函数Q=f(P)为:Q 4 1.2P 2 ,P=5 0.6 Q=0 P5 2、已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数 LTC=Q3-12Q2+40Q 。试 求:(1)当市场商品价格为P=100 时,厂商实现MR=LMC 时的产量、平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)当市场的需求函数为Q=660-15P 时,行业长期均衡时的厂商数量。解答:( 1)根据题意,有:LMC dLTCdQ3Q224Q 40 且完全竞争厂商的P=MR,根据已知条件P=100,故有MR=100。由利润最大化的原则MR=LMC,得: 3Q2-24Q+40=100 整理得Q2-8Q-20=0 解得Q=10(负值舍去了)又因为平均成本函数SAC(Q)STC(Q)Q212Q40 Q 所以,以Q=10 代入上式,得:平均成本值SAC=102-12 10+40=20 最后,利润 =TR-STC=PQ-STC=(10010 )-(103-12102+4010 )=1000-200=800 因此,当市场价格P=100 时,厂商实现MR=LMC 时的产量Q=10,平均成本SAC=20 ,利润为 =800 。(2)由已知的LTC 函数,可得:LAC (Q)LTC(Q)Q312Q240QQ2 12Q40 Q Q 令dLAC(Q) 0 ,即有:dLAC(Q) 2Q12 0 ,解得 Q=6 dQ dQ 且d 2 LAC(Q) 2 0 dQ2 解得Q=6 所以Q=6 是长期平均成本最小化的解。以 Q=6 代入LAC (Q),得平均成本的最小值为:LAC=62-12 6+40=4 由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均 衡时的价格P=4,单个厂商的产量Q=6。 (3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场的长期均衡价格固定为P=4。以P=4 代入市场需求函数Q=660-15P,便可以得到市场的长期均衡数量为Q=660-15 4=600。现已求得在市场实现长期均衡时,市场均衡数量Q=600,单个厂商的均衡产量Q=6,于是,行业长期均衡时的厂商数量=6006=100 (家)。3、已知某完全竞争的成本递增行业的长期供给函数 LS=5500+300P 。试求:(1)当市场需求函数D=8000-200P 时,市场的长期均衡价格和均衡产量;(2)当市场需求增加,市场需求函数为D=10000-200P 时,市场长期均衡加工和均衡产量;(3)比较( 1)、(2),说明市场需求变动对成本递增行业的长期均衡价格个均衡产量的影响。解答:(1)在完全竞争市场长期均衡时有LS=D ,既有:5500+300P=8000-200P 解得Pe=5,以Pe=5 代入LS 函数,得: Qe=5500+300 5=7000 或者,以Pe=5 代入D 函数,得:Qe=8000-200*5=7000 所以,市场的长期均衡价格和均衡数量分别为Pe=5,Qe=7000。(2)同理,根据LS=D ,有:5500+300P=10000-200P 解得Pe=9 以 Pe=9 代入LS 函数,得: Qe=5500+300 9=8200或者,以Pe=9 代入D 函数,得: Qe=10000-200 9=8200 所以,市场的长期均衡价格和均衡数量分别为Pe=9,Qe=8200。 (3)比较( 1)、( 2)可得:对于完全竞争的成本递增行业而言,市场需求增加,会使市场的均衡价格上升,即由Pe=5 上升为Qe=9;使市场的均衡数量也增加,即由Qe=7000 增加为 Qe=8200。也就是说,市场需求与均衡价格成同方向变动,与均衡数量也成同方向变动。4、已知某完全竞争市场的需求函数为 D=6300-400P,短期市场供给函数为 SS=3000+150P ;单个企业在LAC 曲线最低点的价格为6,产量为50;单个企业的成本规模不变。(1)求市场的短期均衡价格和均衡产量;(2)判断( 1)中的市场是否同时处于长期均衡,求企业内的厂商数量;(3)如果市场的需求函数变为D=8000-400P,短期供给函数为SS=4700-400P ,求市场的短 期均衡价格和均衡产量;(4)判断( 3)中的市场是否同时处于长期均衡,并求行业内的厂商数量;(5)判断该行业属于什么类型;(6)需要新加入多少企业,才能提供(1)到( 3)所增加的行业总产量?解答:( 1)根据时常2 短期均衡的条件D=SS ,有: 6300-400P=3000+150P 解得P=6 以 P=6 代入市场需求函数,有:Q=6300-400 6=3900 或者,以P=6 代入短期市场供给函数有:Q=3000+150 6=3900。(2)因为该市场短期均衡时的价格P=6,且由题意可知,单个企业在LAV 曲线最低点的价 格也为6,所以,由此可以判断该市场同时又处于长期均衡。因为由于( 1)可知市场长期均衡时的数量是Q=3900,且由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出长期均衡时行业内厂商的数量为:390050=78 (家)(3)根据市场短期均衡条件D=SS ,有: 8000-400P=4700+150P 解得P=6 以 P=6 代入市场需求函数,有:Q=8000-400 6=5600 或者,以P=6 代入市场短期供给函数,有:Q=4700+150 6=5600 所以,该市场在变化了的供求函数条件下的短期均衡价格和均衡数量分别为P=6,Q=5600。 (4)与( 2)中的分析类似,在市场需求函数和供给函数变化了后,该市场短期均衡的价格P=6,且由题意可知,单个企业在 LAC 曲线最低点的价格也为 6,所以,由此可以判断该市场的之一短期均衡同时又是长期均衡。因为由( 3)可知,供求函数变化了后的市场长期均衡时的产量Q=5600,且由题意可知,在 市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为: 560050=112 (家)。(5)、由以上分析和计算过程可知:在该市场供求函数发生变化前后的市场长期均衡时的价格是不变的,均为P=6,而且,单个企业在LAC 曲线最低点的价格也是6,于是,我们可以判断该行业属于成本不变行业。以上(1)( 5)的分析与计算结果的部分内容如图1-30 所 示(见书P66)。(6)由( 1)、( 2)可知,( 1)时的厂商数量为78 家;由( 3)、( 4)可知,(3)时的厂商数量为112 家。因为,由(1)到( 3)所增加的厂商数量为:112-78=34(家)。5、在一个完全竞争的成本不变行业中单个厂商的长期成本函数为 LAC=Q3-40Q2+600Q ,g 该市场的需求函数为Qd=13000-5P。求:(1)该行业的长期供给函数。(2)该行业实现长期均衡时的厂商数量。解答:( 1)由题意可得:LACLTCQQ240Q600 LMC dTCdQ3Q280Q 600 由 LAC=LMC ,得以下方程:Q2-40Q+600=3Q2-80Q+600 Q2-20Q=0 解得Q=20(负值舍去)由于LAC=LMC ,LAC 达到极小值点,所以,以Q=20 代入LAC 函数,便可得LAC 曲线的最低点的价格为:P=202-4020+600=200 。因为成本不变行业的长期供给曲线是从相当与LAC 曲线最低点的价格高度出发的一条水平 线,故有该行业的长期供给曲线为Ps=200。(2)已知市场的需求函数为Qd=13000-5P,又从 (1)中得到行业长期均衡时的价格P=200,所以,以P=200 代入市场需求函数,便可以得到行业长期均衡时的数量为:Q=13000-5 200=12000 。 又由于从 (1)中可知行业长期均衡时单个厂商的产量Q=20,所以,该行业实现长期均衡时的厂商数量为1200020=600( 家)。6、已知完全竞争市场上单个厂商的长期成本函数为 LTC=Q3-20Q2+200Q ,市场的产品价格为 P=600。求:(1)该厂商实现利润最大化时的产量、平均成本和利润各是多少?(2)该行业是否处于长期均衡?为什么?(3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各为多少?( 4)判断( 1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?解答:( 1)由已知条件可得:LMC dLTCdQ3Q240Q 200,且已知P=600,根据挖目前竞争厂商利润最大化原则LMC=P ,有:3Q2-40Q+200=600 整理得3Q2-40Q-400=0 解得Q=20(负值舍去了)由已知条件可得:LACLTCQQ220Q200 以 Q=20 代入LAC 函数,得利润最大化时的长期平均成本为LAC=202-20 20+200=200 此外,利润最大化时的利润值为:P Q-LTC= (600 20 )( -203-20 202+200 20)=12000-4000=8000 所以,该厂商实现利润最大化时的产量Q=20,平均成本LAC=200 ,利润为8000。(2)令dLACdQ0,即有:dLACdQ2Q200 解得 Q=10 且d 2 LAC 2 0 dQ2 所以,当Q=10 时, LAC 曲线达最小值。以 Q=10 代入LAC 函数,可得:综合( 1)和( 2)的计算结果,我们可以判断(1)中的行业未实现长期均衡。因为,由(2)可知,当该行业实现长期均衡时,市场的均衡价格应等于单个厂商的LAC 曲线最低点的高度,即应该有长期均衡价格P=100,且单个厂商的长期均衡产量应该是Q=10,且还应该有每个 厂商的利润=0 。而事实上,由(1)可知,该厂商实现利润最大化时的价格P=600,产量Q=20,=8000 。显然,该厂商实现利润最大化时的价格、产量、利润都大于行业长期均衡时对单个厂商的要求,即价格600100,产量2010,利润80000。因此,( 1)中的行业未处于长期均衡状态。(3)由( 2)已知,当该行业处于长期均衡时,单个厂商的产量Q=10,价格等于最低的长 期平均成本,即有P=最小的LAC=100 ,利润 =0 。 ( 4)由以上分析可以判断:(1)中的厂商处于规模不经济阶段。其理由在于:(1)中单个厂商的产量Q=20,价格P=600,它们都分别大于行业长期均衡时单个厂商在LAC 曲线最低点生产的产量Q=10和面对的P=100。换言之,(1)中的单个厂商利润最大化的产量和价格组合发生在LAC曲线最低点的右边,即LAC 曲线处于上升段,所以,单个厂商处于规模不经济阶段。7.某完全竞争厂商的短期边际成本函数 SMC=0.6Q-10,总收益函数 TR=38Q,且已知当产量Q=20 时的总成本 STC=260. 求该厂商利润最大化时的产量和利润解答:由于对完全竞争厂商来说,有P=AR=MRAR=TR(Q)/Q=38,MR=dTR(Q)/dQ=38 所以P=38 根据完全竞争厂商利润最大化的原则MC=P 0.6Q-10=38 Q*=80 即利润最大化时的产量再根据总成本函数与边际成本函数之间的关系STC(Q)=0.3Q2-10Q+C =0.3Q2-10Q+TFC 以 Q=20 时 STC=260 代人上式,求TFC ,有260=0.3*400-10*20+TFC TFC=340 于是,得到STC 函数为STC(Q)=0.3Q2-10Q+340 最后,以利润最大化的产量80 代人利润函数,有 (Q)=TR(Q) -STC(Q) =38Q-(0.3Q2-10Q+340)=38*80-(0.3*802-10*80+340) =3040-1460 =1580 即利润最大化时,产量为80,利润为1580 8、用图说明完全竞争厂商短期均衡的形成极其条件。 解答:要点如下:(1)短期内,完全竞争厂商是在给定的价格和给定的生产规模下,通过对产量的调整来实现MR=SMC 的利润最大化的均衡条件的。具体如图1-30 所示(见书P69)。(2