《数学优化模型》PPT课件.ppt
数 学 建 模 -数学模型优化模型的三要素优化模型的三要素于是,优化模型从数学上可以表述为于是,优化模型从数学上可以表述为opt opt 最优化的意思,可以是最优化的意思,可以是minmin(求极大,即(求极大,即minamizeminamize的缩写)或的缩写)或max max(求极小,即(求极小,即minamizeminamize的缩写)的两者之一;的缩写)的两者之一;s.t.s.t.(即(即subject tosubject to)“受约束于受约束于”之意。之意。(1)(2)(3)优化模型基本类型优化模型基本类型1.1.决策变量决策变量x的所有分量的所有分量xi均为连续数值均为连续数值 a)f,hi,gi都是线性函数,则为线性规划(都是线性函数,则为线性规划(LP)b)f,hi,gi至少有一个是非线性,则为非线性规划(至少有一个是非线性,则为非线性规划(NLP)c)f 是二次函数是二次函数,hi,gi 都是线性,则为二次规划(都是线性,则为二次规划(QP)2.2.决策变量决策变量x的的一个或多个分量的的一个或多个分量xi取离散值取离散值 a)x的至少一个分量只取整数数值,则为整数规划(的至少一个分量只取整数数值,则为整数规划(IP)b)x的分量限定只取整数的分量限定只取整数0或或1,则为,则为0-1规划(规划(ZOP)3.3.此外,为了解决实际问题的需要,还可以分为:单目此外,为了解决实际问题的需要,还可以分为:单目 标规划,多目标规划,动态规划,多层规划等标规划,多目标规划,动态规划,多层规划等。(1)线性规划()线性规划(LP)的一般形式)的一般形式目标函数和所有的约束条件都是变量的线性函数。目标函数和所有的约束条件都是变量的线性函数。(2)二次规划问题)二次规划问题目标函数为二次函数,约束条件为线性约束。目标函数为二次函数,约束条件为线性约束。优化模型优化模型1 存贮模型存贮模型2 生猪的出售时机生猪的出售时机3 森林救火森林救火4 最优价格最优价格5 消费者均衡消费者均衡6 6 冰山运输冰山运输7 血管分支血管分支存贮模型存贮模型配件厂为装配线生产若干种产品,轮换产品时因更换设配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费备要付生产准备费,产量大于需求时要付贮存费.该厂该厂生产能力非常大,即所需数量可在很短时间内产出生产能力非常大,即所需数量可在很短时间内产出.已知某产品日需求量已知某产品日需求量100件,生产准备费件,生产准备费5000元,贮存费元,贮存费每日每件每日每件1元元.试安排该产品的生产计划,即多少天生产试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小一次(生产周期),每次产量多少,使总费用最小.要要求求不只是回答问题,而且要建立生产周期、产量与不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系需求量、准备费、贮存费之间的关系.问题分析与思考问题分析与思考 每天生产一次每天生产一次,每次每次100件件,无贮存费无贮存费,准备费准备费5000元元.日需求日需求100件,准备费件,准备费5000元,贮存费每日每件元,贮存费每日每件1元元.10天生产一次天生产一次,每次每次1000件,贮存费件,贮存费900+800+100 =4500元,准备费元,准备费5000元,总计元,总计9500元元.50天生产一次天生产一次,每次每次5000件件,贮存费贮存费4900+4800+100=122500元,准备费元,准备费5000元,总计元,总计127500元元.平均每天费用平均每天费用950元元平均每天费用平均每天费用2550元元1010天生产一次天生产一次,平均每天费用最小吗平均每天费用最小吗?每天费用每天费用5000元元 这是一个优化问题,关键在建立目标函数这是一个优化问题,关键在建立目标函数.显然不能用一个周期的总费用作为目标函数显然不能用一个周期的总费用作为目标函数.目标函数目标函数每天总费用的平均值每天总费用的平均值.周期短,产量小周期短,产量小 周期长,产量大周期长,产量大问题分析与思考问题分析与思考贮存费少,准备费多贮存费少,准备费多准备费少,贮存费多准备费少,贮存费多存在最佳的周期和产量,使总费用(二者之和)最小存在最佳的周期和产量,使总费用(二者之和)最小.模模 型型 假假 设设1.产品每天的需求量为常数产品每天的需求量为常数 r;2.每次生产准备费为每次生产准备费为 c1,每天每件产品贮存费为每天每件产品贮存费为 c2;3.T天生产一次(周期)天生产一次(周期),每次生产每次生产Q件,当贮存量件,当贮存量 为零时,为零时,Q件产品立即到来(生产时间不计);件产品立即到来(生产时间不计);建建 模模 目目 的的设设 r,c1,c2 已知,求已知,求T,Q 使每天总费用的平均值最小使每天总费用的平均值最小.4.为方便起见,时间和产量都作为连续量处理为方便起见,时间和产量都作为连续量处理.模模 型型 建建 立立0tq贮存量表示为时间的函数贮存量表示为时间的函数 q(t)TQrt=0生产生产Q件,件,q(0)=Q,q(t)以以需求速率需求速率r递减,递减,q(T)=0.一周期一周期总费用总费用每天总费用平均每天总费用平均值(目标函数)值(目标函数)离散问题连续化离散问题连续化一周期贮存费为一周期贮存费为A=QT/2模型求解模型求解求求 T 使使模型解释模型解释定性分析定性分析敏感性分析敏感性分析参数参数c1,c2,r的微小变化对的微小变化对T,Q的影响的影响T对对c1的的(相相对对)敏感度敏感度 c1增加增加1%,T增加增加0.5%S(T,c2)=-1/2,S(T,r)=-1/2c2或或r增加增加1%,T减少减少0.5%经济批量订货公式经济批量订货公式(EOQ公式公式)用于订货供应情况用于订货供应情况:不允许缺货的存贮模型不允许缺货的存贮模型模型应用模型应用T=10(天天),Q=1000(件件),C=1000(元元)回答原问题回答原问题c1=5000,c2=1,r=100 每天需求量每天需求量 r,每次订货费,每次订货费 c1,每天每件贮存费每天每件贮存费 c2,T天订货一次天订货一次(周期周期),每次订货每次订货Q件,当贮存量降到零时,件,当贮存量降到零时,Q件立即到货件立即到货.思考思考:为什么与前面计算的为什么与前面计算的C=950元有差别元有差别?允许缺货的存贮模型允许缺货的存贮模型AB0qQrT1t当贮存量降到零时仍有需求当贮存量降到零时仍有需求r,出现缺货,造成损失出现缺货,造成损失.原模型假设:原模型假设:贮存量降到零时贮存量降到零时Q件立即生产出来件立即生产出来(或立即到货或立即到货).现假设:现假设:允许缺货允许缺货,每天每件缺货损失费每天每件缺货损失费 c3,缺货需补足缺货需补足.T周期周期T,t=T1贮存量降到零贮存量降到零一周期总费用一周期总费用一周期一周期贮存费贮存费一周期一周期缺货费缺货费每天总费用每天总费用平均值平均值(目标函数)(目标函数)一周期总费用一周期总费用求求 T,Q 使使为与为与不允许缺货的存贮模型不允许缺货的存贮模型相比,相比,T记作记作T,Q记作记作Q.允许缺货的存贮模型允许缺货的存贮模型不允许不允许缺货缺货模型模型记记允许允许缺货缺货模型模型不不允允许许缺缺货货允许允许缺货缺货模型模型0qQ rT1tT注意:缺货需补足注意:缺货需补足Q 每周期初的存贮每周期初的存贮量量R每周期的生产量每周期的生产量R(或订货量)(或订货量)Q不允许缺货时的产量不允许缺货时的产量(或订货量或订货量)存存 贮贮 模模 型型 存贮模型存贮模型(EOQ公式公式)是研究批量生产计划的重是研究批量生产计划的重要理论基础要理论基础,也有实际应用也有实际应用.建模中未考虑生产费用建模中未考虑生产费用,为什么为什么?在什么条件下在什么条件下可以不考虑可以不考虑?建模中假设生产能力为无限大建模中假设生产能力为无限大(生产时间不计生产时间不计),如果生产能力有限如果生产能力有限(大于需求量的常数大于需求量的常数),应作怎应作怎样的改动样的改动?生猪的出售时机生猪的出售时机饲养场每天投入饲养场每天投入4元资金,用于饲料、人力、设元资金,用于饲料、人力、设备,备,估计估计可使可使80公斤重的生猪体重增加公斤重的生猪体重增加2公斤公斤.问问题题市场价格目前为每公斤市场价格目前为每公斤8元,但是元,但是预测预测每天会降每天会降低低 0.1元,问生猪应何时出售元,问生猪应何时出售?如果如果估计估计和和预测预测有误差,对结果有何影响有误差,对结果有何影响?分分析析投入资金使生猪体重随时间增加,出售单价随投入资金使生猪体重随时间增加,出售单价随时间减少,故存在最佳出售时机,使利润最大时间减少,故存在最佳出售时机,使利润最大.求求 t 使使Q(t)最大最大10天后出售,可多得利润天后出售,可多得利润20元元.建模及求解建模及求解生猪体重生猪体重 w=80+rt出售价格出售价格 p=8-gt销售收入销售收入 R=pw资金投入资金投入 C=4t利润利润 Q=R-C估计估计r=2,若当前出售,利润为若当前出售,利润为808=640(元)(元)t 天天出售出售=10Q(10)=660 640g=0.1=pw-4t敏感性分析敏感性分析研究研究 r,g微小变化时对模型结果的影响微小变化时对模型结果的影响.估计估计r=2,g=0.1 设设g=0.1不变不变 t 对对r 的(相对)敏感度的(相对)敏感度 生猪每天体重生猪每天体重 r 增加增加1%,出售时间推迟,出售时间推迟3%.rt敏感性分析敏感性分析估计估计r=2,g=0.1研究研究 r,g微小变化时对模型结果的影响微小变化时对模型结果的影响.设设r=2不变不变 t 对对g的(相对)敏感度的(相对)敏感度 生猪价格每天的降低生猪价格每天的降低g增加增加1%,出售时间提前,出售时间提前3%.gt强健性分析强健性分析保留生猪直到每天收入的增值等于每天的费用时出售保留生猪直到每天收入的增值等于每天的费用时出售.研究研究 r,g不是常数时对模型结果的影响不是常数时对模型结果的影响.w=80+rt w=w(t)p=8-gt p=p(t)每天收入的增值每天收入的增值 每天投入的资金每天投入的资金 利润利润森林救火森林救火森林失火后,要确定派出消防队员的数量森林失火后,要确定派出消防队员的数量.队员多,森林损失小,救援费用大;队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小队员少,森林损失大,救援费用小.综合考虑损失费和救援费,确定队员数量综合考虑损失费和救援费,确定队员数量.问题问题分析分析问题问题记队员人数记队员人数x,失火时刻失火时刻t=0,开始救火时刻开始救火时刻t1,灭火时刻灭火时刻t2,时刻时刻t森林烧毁面积森林烧毁面积B(t).损失费损失费f1(x)是是x的减函数的减函数,由烧毁面积由烧毁面积B(t2)决定决定.救援费救援费f2(x)是是x的增函数的增函数,由队员人数和救火时间决定由队员人数和救火时间决定.存在恰当的存在恰当的x,使,使f1(x),f2(x)之和最小之和最小.关键是对关键是对B(t)作出合理的简化假设作出合理的简化假设.问题问题分析分析失火时刻失火时刻t=0,开始救火时刻开始救火时刻t1,灭火时刻灭火时刻t2,画出时刻画出时刻t森林烧毁面积森林烧毁面积B(t)的大致图形的大致图形.t1t20tBB(t2)分析分析B(t)比较困难比较困难,转而讨论单位时间转而讨论单位时间烧毁面积烧毁面积 dB/dt(森林烧毁的速度森林烧毁的速度).模型假设模型假设 3)f1(x)与与B(t2)成正比,系数成正比,系数c1(烧毁单位面积损失费)烧毁单位面积损失费)1)0 t t1,dB/dt 与与 t成正比,系数成正比,系数 (火势蔓延速度火势蔓延速度).2)t1 t t2,降为降为-x(为队员的平均灭火为队员的平均灭火速度速度).4)每个)每个队员的单位时间灭火费用队员的单位时间灭火费用c2,一次性费用一次性费用c3.假设假设1)的解释)的解释 rB火势以失火点为中心,均匀向四火势以失火点为中心,均匀向四周呈圆形蔓延,半径周呈圆形蔓延,半径 r与与 t 成正比成正比.面积面积 B与与 t2 成正比成正比dB/dt与与 t 成正比成正比模型建立模型建立b0t1tt2假设假设1)目标函数目标函数总费用总费用假设假设3)4)假设假设2)模型建立模型建立目标函数目标函数总费用总费用模型求解模型求解求求 x使使 C(x)最小最小结果解释结果解释 /是火势不继续蔓延的最少队员数是火势不继续蔓延的最少队员数b0t1t2t其中其中 c1,c2,c3,t1,为已知参数为已知参数模型模型应用应用c1,c2,c3已知已知,t1可估计可估计,c2 x c1,t1,x c3,x 结果结果解释解释c1烧毁单位面积损失费烧毁单位面积损失费,c2每个每个队员单位时间灭火费队员单位时间灭火费,c3每个每个队员一次性费用队员一次性费用,t1开始救火时刻开始救火时刻,火火势蔓延速度势蔓延速度,每个每个队员平均灭火队员平均灭火速度速度.为什么为什么?,可可设置一系列数设置一系列数值值由模型决定队员数量由模型决定队员数量x最优价格最优价格问题问题根据产品成本和市场需求,在产销平根据产品成本和市场需求,在产销平衡条件下确定商品价格,使利润最大衡条件下确定商品价格,使利润最大.假设假设1)产量等于销量,记作)产量等于销量,记作 x.2)收入与销量)收入与销量 x 成正比,系数成正比,系数 p 即价格即价格.3)支出与产量)支出与产量 x 成正比,系数成正比,系数 q 即成本即成本.4)销量)销量 x 依于价格依于价格 p,x(p)是减函数是减函数.建模与建模与求解求解收入收入支出支出利润利润进一步设进一步设求求p使使U(p)最大最大使利润使利润 U(p)最大的最优价格最大的最优价格 p*满足满足最大利润在边际收入等于边际支出时达到最大利润在边际收入等于边际支出时达到 建模建模与求解与求解边际收入边际收入边际支出边际支出结果结果解释解释 q/2 成本的一半成本的一半 b 价格上升价格上升1单位时销量的下降单位时销量的下降 幅度(需求对价格的敏感度)幅度(需求对价格的敏感度)a 绝对需求绝对需求(p很小时的需求很小时的需求)b p*a p*思考:如何得到参数思考:如何得到参数a,b?销量销量p 价格价格q 成本成本最优价格最优价格q2U(q1,q2)=cq10消费者均衡消费者均衡问题问题消费者对甲乙两种商品的偏爱程度用无差别消费者对甲乙两种商品的偏爱程度用无差别曲线族表示,问他如何分配一定数量的钱,曲线族表示,问他如何分配一定数量的钱,购买这两种商品,以达到最大的满意度购买这两种商品,以达到最大的满意度.设甲乙数量为设甲乙数量为q1,q2,消消费者的无差别曲线族费者的无差别曲线族(单调减、下凸、不相单调减、下凸、不相交),记作交),记作 U(q1,q2)=cU(q1,q2)效用函数效用函数已知甲乙价格已知甲乙价格 p1,p2,有钱有钱s,试分配,试分配 s,购买甲乙数量购买甲乙数量 q1,q2,使使 U(q1,q2)最大最大.s/p2s/p1q2U(q1,q2)=cq10模型模型及及求解求解已知价格已知价格 p1,p2,钱钱 s,求求q1,q2,或或 p1q1/p2q2,使使 U(q1,q2)最大最大.几几何何解解释释直线直线MN:最优解最优解Q:MN与与 l2切点切点斜率斜率MQN结果结果解释解释边际效用边际效用消费者均衡状态在两种商品消费者均衡状态在两种商品的边际效用之比恰等于它们的边际效用之比恰等于它们价格之比时达到价格之比时达到.效用函数效用函数U(q1,q2)应满足的条件应满足的条件条件条件A U(q1,q2)=c 所确定的函数所确定的函数 q2=q2(q1)单调减、下凸单调减、下凸 解释条件解释条件 B的实际意义的实际意义条件条件B条件条件B条件条件A效用函数效用函数U(q1,q2)几种常用几种常用的形式的形式 消费者均衡状态下购买两种商品费用之比消费者均衡状态下购买两种商品费用之比与二者价格之比的平方根成正比与二者价格之比的平方根成正比.U(q1,q2)中参数中参数 ,分别表示消费者对甲乙分别表示消费者对甲乙两种商品的偏爱程度两种商品的偏爱程度.购买两种商品费用之比与二者价格无关购买两种商品费用之比与二者价格无关.U(q1,q2)中参数中参数 ,分别表示对甲乙分别表示对甲乙的偏爱程度的偏爱程度.思考:如何推广到思考:如何推广到 m(2)种商品的情况种商品的情况?效用函数效用函数U(q1,q2)几种常用几种常用的形式的形式冰山运输冰山运输背景背景 波斯湾地区水资源贫乏,淡化海水波斯湾地区水资源贫乏,淡化海水的成本为每立方米的成本为每立方米0.1英镑英镑.专家建议从专家建议从9600千米远的南极用拖千米远的南极用拖船运送冰山,取代淡化海水船运送冰山,取代淡化海水.从经济角度研究冰山运输的可行性从经济角度研究冰山运输的可行性.建模准备建模准备1.日租金和最大运量日租金和最大运量船船 型型小小 中中 大大日租金(英镑)日租金(英镑)最大运量(米最大运量(米3)4.06.28.05 1051061072.燃料消耗(英镑燃料消耗(英镑/千米)千米)3.融化速率(米融化速率(米/天)天)与南极距离与南极距离(千米千米)船速船速(千米千米/小时小时)0 1000 4000135 0 0.1 0.3 0 0.15 0.45 0 0.2 0.6冰山体积冰山体积(米米3)船速船速(千米千米/小时小时)105 106 107135 8.4 10.5 12.6 10.8 13.5 16.2 13.2 16.5 19.8建模准备建模准备建模建模目的目的选择船型和船速,使冰山到达目的地后每立选择船型和船速,使冰山到达目的地后每立米水的费用最低,并与淡化海水的费用比较米水的费用最低,并与淡化海水的费用比较.模型模型假设假设 航行过程中船速不变,总距离航行过程中船速不变,总距离9600千米千米.冰山呈球形,球面各点融化速率相同冰山呈球形,球面各点融化速率相同.到达目的地后,每立米冰可融化到达目的地后,每立米冰可融化0.85立米水立米水.建模建模分析分析目的地目的地水体积水体积运输过程运输过程融化规律融化规律总费用总费用目的地目的地冰体积冰体积初始冰初始冰山体积山体积燃料消耗燃料消耗租金租金船型船型,船速船速船型船型船型船型,船速船速船型船型第第t天融天融化速率化速率模模型型建建立立1.冰山融化规律冰山融化规律 船速船速u(千米千米/小时小时)与南极距离与南极距离d(千米千米)融化速率融化速率r(米米/天)天)r是是 u 的线性函数的线性函数d4000时时u与与d无关无关航行航行 t 天天,d=24ut 0 1000 4000135 0 0.1 0.3 0 0.15 0.45 0 0.2 0.6urd冰山初始半径冰山初始半径R0,航行,航行t天时半径天时半径冰山初始体积冰山初始体积t天时体积天时体积总航行天数总航行天数选定选定u,V0,航行航行t天时冰山体积天时冰山体积到达目的地到达目的地时冰山体积时冰山体积2.燃料消耗燃料消耗 105 106 107135 8.4 10.5 12.6 10.8 13.5 16.2 13.2 16.5 19.8Vuq1燃料消耗燃料消耗 q1(英镑英镑/千米千米)q1对对u线性线性,对对log10V线性线性选定选定u,V0,航行第航行第t天燃料消耗天燃料消耗 q(英镑英镑/天天)燃料消耗总费用燃料消耗总费用 V0 5 105 106 107 f(V0)4.0 6.2 8.0 3.运送每立米水费用运送每立米水费用 冰山初始体积冰山初始体积V0的日的日租金租金 f(V0)(英镑)(英镑)航行天数航行天数总燃料消耗费用总燃料消耗费用拖船租金费用拖船租金费用冰山运输总费用冰山运输总费用冰山到达目的地冰山到达目的地后得到的水体积后得到的水体积3.运送每立米水费用运送每立米水费用 冰山运输总费用冰山运输总费用运送每立运送每立米水费用米水费用 到达目的地到达目的地时冰山体积时冰山体积模型求解模型求解选择船型和船速,使冰山到达选择船型和船速,使冰山到达目的地后每立米水的费用最低目的地后每立米水的费用最低求求 u,V0使使Y(u,V0)最小最小u=45(千米千米/小时小时),V0=107(米米3),Y(u,V0)最小最小V0只能取离散值只能取离散值经验公式很粗糙经验公式很粗糙33.544.551070.07230.06830.06490.06630.06580.22510.20130.18340.18420.179010678.90329.82206.21385.46474.5102V0u5 106取几组(取几组(V0,u)用)用枚举法枚举法计算计算结果分析结果分析由于未考虑影响航行的种种不利因素,冰山由于未考虑影响航行的种种不利因素,冰山到达目的地后实际体积会显著小于到达目的地后实际体积会显著小于V(u,V0).有关部门认为,只有当计算出的有关部门认为,只有当计算出的Y(u,V0)显著显著低于淡化海水的成本时,才考虑其可行性低于淡化海水的成本时,才考虑其可行性.大型拖船大型拖船V0=107(米米3),船速,船速 u=45(千米千米/小时小时),冰山冰山到达目的地后每立米水的费用到达目的地后每立米水的费用 Y(u,V0)约约0.065(英镑英镑).虽然虽然0.065英镑略低于淡化海水的成本英镑略低于淡化海水的成本0.1英镑,英镑,但是模型假设和构造非常简化与粗糙但是模型假设和构造非常简化与粗糙.冰冰 山山 运运 输输 模型来自实际问题的可行性研究模型来自实际问题的可行性研究.收集数据是建模的重要准备工作收集数据是建模的重要准备工作.根据数据得到的经验公式是建模的基础根据数据得到的经验公式是建模的基础.冰山形状的球形假设简化了计算冰山形状的球形假设简化了计算,这个这个假设的合理性如何假设的合理性如何?如果改变它呢如果改变它呢?血血 管管 分分 支支背背景景机体提供能量维持血液在血管中的流动给血机体提供能量维持血液在血管中的流动给血管壁以营养和克服血液流动的阻力管壁以营养和克服血液流动的阻力.消耗能消耗能量与取决于血管的几何形状量与取决于血管的几何形状.在长期进化中在长期进化中动物血管的几何形状已经达到能量最小原则动物血管的几何形状已经达到能量最小原则.研究在能量最小原则下,血管分支处粗细血研究在能量最小原则下,血管分支处粗细血管半径比例和分岔角度管半径比例和分岔角度.问问题题模型假设模型假设一条粗血管和两条细血管在分支点对称地处于同一平面一条粗血管和两条细血管在分支点对称地处于同一平面.血液流动近似于粘性流体在刚性管道中的运动血液流动近似于粘性流体在刚性管道中的运动.血液给血管壁的能量随管血液给血管壁的能量随管壁的内表面积和体积的增壁的内表面积和体积的增加而增加,管壁厚度近似加而增加,管壁厚度近似与血管半径成正比与血管半径成正比.qq1q1ABBCHLll1rr1 q=2q1r/r1,?考察血管考察血管AC与与CB,CB粘性流体在刚粘性流体在刚性管道中运动性管道中运动 pA,C压力差,压力差,粘性系数粘性系数克服阻力消耗能量克服阻力消耗能量E1 提供营养消耗能量提供营养消耗能量E2 管壁内表面积管壁内表面积 2 rl管壁体积管壁体积(d2+2rd)l,管壁厚度管壁厚度d与与r成正比成正比模型假设模型假设qq1q1ABBCHLll1rr1 模型建立模型建立qq1q1ABBCHLll1rr1 克服阻力消耗能量克服阻力消耗能量提供营养消耗能量提供营养消耗能量机体为血流提供能量机体为血流提供能量模型求解模型求解qq1q1ABBCHLll1rr1 模型模型解释解释生物学家:结果与观察大致吻合生物学家:结果与观察大致吻合大动脉半径大动脉半径rmax,毛细血管半径毛细血管半径rmin大动脉到毛细血管有大动脉到毛细血管有n次分岔次分岔 观察:狗的血管观察:狗的血管血管总条数血管总条数推论推论n=?