通用版2019版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测四函数及其表示理.pdf
.课时达标检测四课时达标检测四函数及其表示函数及其表示小题对点练点点落实对点练函数的定义域1下列函数中,与函数y错误错误!的定义域相同的函数为Ay错误错误!CyxexBy错误错误!Dy错误错误!解析:选 D函数y错误错误!的定义域为x|x0;y错误错误!的定义域为x|xk,kZ;y错误错误!的定义域为x|x0;yxe 的定义域为 R;y错误错误!的定义域为x|x0故选 D.2函数f错误错误!的定义域为A0,1C4,1B1,1D0,1x解析:选 A要使函数f有意义,应有错误错误!解得1x0 或 0 x1.故选 A.3 已知函数f的定义域为0,2,则函数gf错误错误!的定义域为A0,1C1,2B0,2D1,3解析:选 A由题意,得错误错误!解得 0 x1.故选 A.4设函数flg,则函数ff的定义域为AC9,BD9,1解析:选 Bffflglg1lg,其定义域为错误错误!的解集,解得9x1,所以ff的定义域为故选 B.5函数yln的定义域为 R,则m的范围是_解析:由条件知,xxm0 对xR 恒成立,即14m0,m错误错误!.答案:错误错误!对点练函数的表示方法1设函数f满足f错误错误!1x,则f的解析式为A.错误错误!C.错误错误!B.错误错误!D.错误错误!22解析:选 A令错误错误!t,则x错误错误!,代入f错误错误!1x,得f1错误错误!错误错误!,故选 A.2如果f错误错误!错误错误!,则当x0 且x1 时,fA.错误错误!C.错误错误!B.错误错误!D.错误错误!1解析:选 B令错误错误!t,得x错误错误!,f错误错误!错误错误!,f错误错误!.3已知f是一次函数,且满足 3f2f2x17,则f_.解析:设faxb,则 3f2f3ax3a3b2ax2a2bax5ab,即ax5ab2x17 不论x为何值都成立,错误错误!解得错误错误!f2x7.答案:2x74若函数f2x3,gf,则函数g的解析式为_解析:令x2t,则xt2.因为f2x3,gf2x3,所以g232t1.故函数g的解析式为g2x1.答案:g2x1对点练分段函数1已知f错误错误!则fA.错误错误!C3B错误错误!D3解析:选 Dff1f2cos错误错误!2123.故选 D.2设f错误错误!若ff,则f错误错误!A2C6B4D8解析:选 C当 0a1 时,a11,f错误错误!,f22a,ff,错误错误!2a,解得a错误错误!或a0f错误错误!f26.当a1 时,a12,f2,f22a,22a,无解 综上,f错误错误!6.3已知函数f错误错误!若f1,则fA2C1B1D22a2解析:选 A当 2a2,即a0 时,f211,解得a1,则fflog232;当 2a0 时,flog231,解得a错误错误!,舍去综上,f2.故选 A.4 已知函数f错误错误!若aff0,则实数a的取值范.围为ACBD22解析:选D根据题意,当a0时,ff0,即aa30,a2a0,解得a2;当a0 时,ff0,即3a 0,解得a2.综上,实数a的取值范围为故选 D.5已知函数f错误错误!若ff3a,则a的取值范围是_解析:由题知,f213,fff3 6a,若ff3a,则 96a3a,即a2a30,解得1a3.答案:大题综合练迁移贯通1已知f4x2x1,求f的解析式;定义在内的函数f满足 2fflg,求f的解析式解:令t2x1,则x错误错误!,所以f4错误错误!2错误错误!1 1tt1,即fxx1.当x时,有 2fflg,以x代替x得 2fflg由消去f,得f错误错误!lg错误错误!lg,x2已知函数f对任意实数x均有f2f,且f在区间0,1上有解析式fx.求f,f;写出f在区间2,2上的解析式解:由题意知f2f2f0,2222222222222ff错误错误!f错误错误!错误错误!错误错误!.当x0,1时,fx;当x1,2时,x10,1,f错误错误!f错误错误!;当x1,0时,x10,1,f2f2;当x2,1时,x11,0,f2f22 4.所以f错误错误!3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离在某种路面上,某种型号汽车的刹车距离y与汽车的车速x满足下列关系:y错误错误!mxn 如图是根据多次实验数据绘制的刹车距离y与汽车的车速x的关系图.22222.求出y关于x的函数解析式;如果要求刹车距离不超过25.2 米,求行驶的最大速度解:由题意及函数图象,得错误错误!解得m错误错误!,n0,所以y错误错误!错误错误!令错误错误!错误错误!25.2,得72x70.x0,0 x70.故行驶的最大速度是 70 千米/时.