欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第二章有限差分方法基础解读课件.ppt

    • 资源ID:71806396       资源大小:2.36MB        全文页数:81页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第二章有限差分方法基础解读课件.ppt

    计算流体力学引论计算流体力学引论The Elements of Computational Fluid Dynamics第二章 有限差分方法基础2.1 有限差分方法概述2.2 导数的数值逼近方法2.3 差分格式的性质2.4 发展方程的稳定性分析2.1 有限差分方法概述 以一维非定常热传导方程为例,介绍有限差分方法的概念、简单构造方法和求解过程。2.1.1 基本方程和定解问题方程(2.1.1)和初边条件(2.1.2)构成了一个适定的定解问题。有限差分方法:对于一个偏微分方程,如果把方程中的所有偏导数近似地用代数差商(Algebraic Difference Quotient)代替,则可以用一组代数方程近似地替代这个偏微分方程,进而得到数值解,这种方法称为有限差分方法(Finite Difference Method)。2.1.2 求解域及偏导数的离散化 为了用有限差分方法求解式(2.1.1),需要把其中的偏导数表示为代数形式,为此,首先要把自变量从连续的分布变为离散形式。这个过程称为求解域的离散化。1.空间求解域的离散化把空间求解域分为M段(均匀剖分)2.时间变量的离散化把感兴趣的时间段(t=T之前)分为N段(均匀剖分),则时间方向的求解域可以划分为 求解域被划分为一系列离散的时空网格点 图2.1 求解域的离散化 3.解的离散表示目标:求出所有网格点上物理量u的近似解。4.导数的数值逼近把方程中的偏导数项近似表示为代数形式。2.1.3 差分格式同一偏导数可以有不同的近似方法,不同的导数近似方法导致方程的不同的有限差分近似。1.FTCS(Forward difference in Time,Central difference in Space)格式时间方向用前差近似,空间二阶导数用中心差分近似。对初始条件和边界条件的离散化式(2.1.9)(2.1.12)称为方程(2.1.1)的一个有限差分方程或有限差分格式(finite difference scheme)。2.BTCS(Backward difference in Time,Central difference in Space)格式时间方向用后差近似,空间二阶导数用中心差分近似。在研究数值方法时,通常把 tn 时刻的物理量视为已知量,而把 tn+1 时刻的物理量作为待求的未知量。因此,式(2.1.13)可以改写成2.1.4 差分方程的求解1.FTCS 格式可以改写为可见,在FTCS格式中,某一点的数值解只依赖于前一时间步的三个点,如图2.2所示。图2.2:FTCS格式的模板点FTCS格式的求解过程2.BTCS 格式可以改写为跟FTCS格式不同,BTCS格式中同时涉及到 n+1 时刻的多个未知量,不能递推求解,称为隐式格式(implicit scheme)。图2.3:BTCS格式的模板点BTCS格式的求解过程2.1.5 用时间相关方法求解定常问题考虑非定常热传导方程和定解条件BTCS格式的求解过程FTCS格式的求解过程2.2 导数的数值逼近方法2.2.1 精度分析 在上一节,我们得到了一阶偏导数的前差、后差和中心差分近似,以及二阶导数的中心差分近似。这些近似方法逼近偏导数的程度如何呢?可以用Taylor展开式进行分析。一般来讲,对偏导数的近似精度越高,差分格式的精度越高。例:一维非定常热传导方程的FTCS格式中涉及的导数差分近似的精度。2.2.2 导数差分近似的待定系数法2.2.3 导数差分近似方法的差分算子法1.差分算子的定义 算子,一种前置运算符。算子和它后面的作用量一起代表一种确定的运算过程。在引入差分算子的定义之前,先介绍一种特殊的算子移位算子。移位算子的运算规则为移位算子的下标表示移位的方向,上标表示移位的步数。差分算子:移位算子和可以表示为移位算子函数的算子。差分方法中常用的算子:2.差分算子之间的关系所有的差分算子均可用Taylor展开式来估算截断误差项的量级。3.微分算子与差分算子的关系4.导数的近似 根据差分算子之间的转化关系,可以建立微分算子与其它差分算子之间的联系,从而得到导数的数值近似公式。即:即:与待定系数法得到的结果一致。即:5.紧致格式 从上面的推导可以看出,导数的有限差分近似精度越高,所需要的模板点越多。对于一阶导数,一般需要5个点才能得到四阶精度的差分近似。模板点数太多不仅使数值方法变得复杂,也给边界附近的处理带来一定困难。紧致格式:用较少的模板点构造导数的高阶近似。基于Pade近似的导数近似方法,称为紧致格式(compact scheme)。2.3 差分格式的性质2.3.1 范数的定义及性质1.向量范数2.算子范数2.3.2 差分格式的精度差分格式是微分方程的近似,通常用局部截断误差(local truncation error)衡量差分格式逼近微分方程的程度。如果时间步长和空间步长之间满足一定的关系,FTCS格式时间方向可达到二阶精度,空间方向可达到四阶精度。根据差分格式精度的定义,按照上面的分析,FTCS格式时间方向是一阶精度,空间方向是二阶精度。2.3.3 差分格式的相容性截断误差是在网格点上逐点定义的。定义中每个网格点上的数值解构成一个解向量,每一个网格点上的截断误差也构成一个向量。因此,可以用向量范数来刻画差分格式的局部截断误差。2.3.4 差分格式的收敛性和稳定性1.差分方程的矩阵形式考虑线性的发展方程(双曲型方程和抛物型方程)的差分格式。发展型方程的一般形式:以非定常热传导方程的FTCS格式为例,将差分格式写成矩阵形式:FTCS格式:解向量记为:考虑到边界条件,则差分格式可以写为:2.整体截断误差局部截断误差:差分方程逼近微分方程的程度整体截断误差:差分方程的解逼近微分方程的精确解的程度3.差分格式的收敛性和稳定性差分格式的收敛性对于保证数值解的有效性是非常重要的。如果差分格式是收敛的,那么,当计算网格足够密时,数值解将相当接近精确解。差分格式的稳定性等价于差分方程数值解的一致有界性。上述定理建立了算子范数的一致有界性与稳定性之间的关系。当差分格式稳定时,整体截断误差和局部截断误差量级相同。Lax等价性定理是计算流体力学中的一个重要定理。直接分析差分格式的收敛性比较困难,而稳定性分析则比较简单。Lax定理告诉我们,在一定条件下,收敛性和稳定性是等价的;通过稳定性分析,即可确定差分格式的收敛条件。4.稳定性的意义2.4 发展方程的稳定性分析2.4.1 矩阵方法2.4.2 Von Neumann稳定性理论2.4.3 稳定性分析实例

    注意事项

    本文(第二章有限差分方法基础解读课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开