线性代数(李建平)习题答案详解__复旦大学出版社.pdf
线性代数课后习题答案线性代数课后习题答案习题一1.2.3(答案略)4.(1)(127435689)415 (奇数)(127485639)为偶数故所求为127485639(2)(397281564)25119(奇数)所求为 3972815645.(1)(532416)42110 6 (偶数)项前的符号位1 1(正号)(2)a32a53a26a11a44a65 a11a26a32a44a53a65(162435)415 项前的符号位(1)5 1(负号)6.(1)原式=(1)(234(2)原式=1(3)原式=(1)n1)612n (1)(n1)n!(n 1)(n 2)21n(1)n(n1)2(n1)(n2)21 n)(n1)(n2)2n!(n(n1)21)a1na2(n1)an1(1)a1na2(n1)an17.8(答案略)9.D 162x019(42)0 x 710.(1)从第 2 列开始,以后各列加到第一列的对应元素之上,得x111x11xxx(n1)x(n1)x(n1)1x111x1110 x1000 x 1x(n1)x(n1)(x 1)n1(2)按第一列展开:yx00y000 x00yD xxn1(1)n1y xn(1)n1yn-1-11n(n1)1(3)D 21110n(n1)0200234n121134512311n1nn112n3n2n2n1n1n11n1n1111111n1n1n(n1)2111111n1n111n1n111111111n(n1)(1)(n2)(n3)21n111n211111n110011111n111n11(1)(n1)(n2)2n(n1)211111n111n00(1)1100n00n(1)(n1)(n2)2n(n1)2101nn(n1)2nn1n n2-2-习题二1.2.3.4.5(答案略)x6.设B B 11x21x12为与A A可交换的矩阵,则有ABAB BABAx22x12 x11x22x21x121 1x221 11 1 x11即1 1x21解之得x11 a,x12b,x21b,x22 a x1301 y17.(1)x2231y2,记为X X=AYAYx012y33 y1 1y21y031 z 11,记为Y Y=BZBZz212 z 01z23 x1 3(2)X X=A ABZBZ=ABABZ Z即x25x138(答案略)345 9.f(A A)A A23A A 2E E 18101034110.(1)(A A B B)(A A B B)A A2 BABA ABAB B B2 A A2 B B2(2)(A A B B)2(A A B B)(A A B B)A A2 BABA ABAB B B2=A A22ABAB B B211.A A2 A A,A A 1(B B E E)2B B 2A A E E,B B2 4A A24A A E E E E反之若B B2 E E,则4A A24A AO O,即A A2 A A12.(1)设A A (aij),A A2(bij)A AT A Aaij aji又A A2O Obii 0又bij ai1a1j ai2a2 j ainanj ai12 ai22-3-ain2(i,j 1,2,n)当ij 1,2,n时,有a11a12A0a1n0,a21a22a2n0,an1an2ann0(2)设A A(aij),AAAAT(bij)则bijai 1aj 1ai2aj2A ATA A0bij0(i,j 1,2,当ij时,有ai 12ai22故ai 1ai2ain0(i 1,2,n)ainajnain20(i 1,2,n),n)即A A013.(1)(A ATA A)TA ATA AA ATA A为对称矩阵同理AAAAT也为对称矩阵(2)(A AA AT)TA ATA AA AA ATA AA AT为对称矩阵又(A AA AT)TA ATA A(A AA AT)A AA AT为反对称矩阵(3)A A1(A AA ATA AA AT)1(A AA AT)1(A AA AT)222由(2)知,1(A AA AT)为对称矩阵,1(A AA AT)为反对称矩阵22故A A可表示成一个对称矩阵与一个反对称矩阵的和。14.(1)必要性:A ATA A,B BTB B,(ABAB)TABABABAB(ABAB)TB BTA ATBABA充分性:A ATA A,B BTB B,ABABBABA(ABAB)T(BABA)TA ATB BTABAB (2)必要性:A A2E E,B B2E E,(ABAB)2E EBABAEBAEEBAEA A2BABBAB2A A(ABAB)2B BABAB充分性:A A2E E,B B2E E,ABABBABA(ABAB)2(ABAB)(ABAB)A A(BABA)B BA A2B B2E E(3)必要性:A A2A A,B B2B B,(A AB B)2A AB B(A AB B)2A A2ABABBABAB B2A ABABAABABB BA AB B-4-即ABABBABA充分性:A A2 A A,B B2 B B,ABAB BABA(A A B B)2 A A B B15(答案略)16.(E E A A)(E E A A A AE E A A可逆。且(E E A A)1 E E A A A A217.A Ak(A A1)k A AkA Ak A A A Ak1AAAA1A A1 E E A Ak1)E EA Ak可逆,且(A Ak)1(A A1)k18.(答案略)19.AAAA*A A E E,若A A可逆,则A A 01A AA A*E E故A A*可逆,且(A A*)1A AA AA A20.设A A (aij),A A是对称矩阵aij aji记A A*(Nij),则*A A1*N Nij,A A1为对称矩阵。ji,即A A为对称矩阵,又A AA A21.(1)设A A*(Nij),则(A A)*(1)n1Nij(1)n1A A*(2)AAAA*A A E EA A*A A A A1又(A A1)(A A1)*A A1E E(A A1)*A A1(A A1)1 A A-1-1A A于是A A*(A A1)*A A A A1A A1A A E E即(A A1)*(A A*)1(3)AAAA*A A E EA A*A A A A1于是(A A*)T A A(A A1)T A A(A AT)1 A AT(A AT)1(A AT)*(4)(注意加条件:A A可逆)A A可逆A*A A A A1(A A*)*(A A A A1)*A An1(A A1)*A An1(A A*)1-5-A An1(A A A A1)1 A An2A A22.B C1ACBm(C1AC)(C1AC)23.24.(答案略)(C1AC)C1AmC25.A A23A A2E E 0A A1(A A3E E)E E2A A可逆,且A A11(A A3E E)226.P P1APAP A A P P P P1A A11(P P P P1)(P P P P1)(P P P P1)(P P 11P P1)141 14 1110 1又 P P,P P3,1111110214 10 14 27312732A A11111311021168368427(答案略)28.C C A ACACAC C A A(E E A A)1又 B B E E ABABB B (E E A A)1故B B C C (E E A A)1 A A(E E A A)1(E E A A)(E E A A)1 E E29.(3A A)12A A*1A A12A A*311A A*2A A*12A A*3A A3 A A22 A A*4A A*33AAAA*A A E EA A A A*A A,A A*A A(3A A)2A A 431*nn1 1627312230.(答案略)31.(1)A A1,2A A3,A A2 A A1,A A2,2A A3 2 A A1,A A2,A A3 22 4(2)A A33A A1,3A A2,A A1 A A3,3A A2,A A1 A A1,3A A2,A A3 32 632.A AB BA A B BB BA AB BA A B BA A B BA AB BO O A A+B B A A B BA A B B-6-O OA A O O33.(1)1B BO OA A1B B1 AAAA1O OO OB B1O OO OE E1BBBBO OO OE E O OO OA A1B BO OA A A AC C A A1(2)O OB BO OA A1CBCB1 AAAA11B BO OAAAA1CBCB1CBCB1E E1BBBBO OO OE E1A AC C A A1O OB BO OA A1CBCB1B B1-7-习题三1.2.3.4(答案略)5.不能由 1,2,m线性表示线性方程组k1 1 k2 2 km m 无解,ks,使不妨假设 能由 1,2,s(s m)线性表示,则存在一组数k1,k2,k1 1 k2 2 ks s 0 m 从而k1 1 k2 2 ks s 0 s1此式与方程组k1 1 k2 2 km m 无解矛盾。故 不能由 1,2,m的任何部分组线性表示 36.依题意121121411 2151221312141333 3151 7131211413423117273 3所以1211214 71 42173即1 237123211231 111 17.212321112 111123333 111 令A A 111A A 4 01111112A A可逆,于是2 A A12 033121212001122132-8-12121即21232133218(答案略)a219.当2a0 a22a4 0即当a 3或a 2时,1,2,3线性相关111否则1,2,3线性无关。10.(1)设k11k2(12)则(k1 k2 km(1m)0 kmm 0 km)1(k2 k3 km)2k1 k2 km 0k1 0k k 0k 022m即km 0km 0故1,12,1m线性无关。km(m1)0(km1 km)m 0(2)设k1(12)k2(23)则(k1km)1(k1k2)21,2,k1km 0k k 012解之得l,m线性无关km1 km 0,n能由基本单位向量组1,2,n线性表示;,n线性表示为11.一方面,向量组1,2,另一方面,基本单位向量组1,2,n由向量组1,2,11,221,332,nnn1 向量组1,2,12.一方面1,2,n与向量组1,2,r可由向量组1,2,n等价。,s线性表示;另一方面由于1,2,r与1,2,s有相同的秩,所以1,2,r就是向量组1,2,s的一个极大无关组,-9-从而1,2,s可以由1,2,r线性表示.故1,2,r1,2,r,r1,s13.设是向量组1,2,s中任意一个向量可由i1,i2,ir线性表示又R1,2,s r,i1,i2,ir线性无关i1,i2,ir是1,2,s的一个极大无关组。14.1,2,n可由1,2,n线性表示,而1,2,n也可由1,2,n线性表示1,2,n1,2,n从而R1,2,n=R1,2,n=n故1,2,n线性无关。15.必要性:1,2,n是一组n维向量,若1,2,n线性无关,显然任意n维向量都可由1,2,n线性表示。充分性:任意n维向量都可以由1,2,n线性表示,基本单位向量组1,2,n可由1,2,n线性表示,故n R1,2,n R1,2,n nR1,2,-10-,n n从而1,2,n线性无关。习题四1.2.3.4.5.6(答案略)7.设B B 1,2,由ABAB 0得A A1,A A2 0即A A1=0,A A2 0可见,1,2是方程组AXAX=0的两个解又 R1,2=21,2是方程组AXAX=0的两个线性无关的解。于是,问题就转化为求解方程组AXAX=01171022131324 88A A 13240855550188 1 1788 x1x5522122 x38810 x40111755TT即为所求。取1(1,5,8,0),2(17,5,0,8)B (1,2)80 0810ab8、设所求方程组为A24X41 0.不妨设A,01cdA1 0R(A)2,依题设,A2 0,2a3b 0a 32c3d 1 0b 2即a3 0c 2c2 0d 1 x11022x2故所求方程组为 x 0.01213x49、由题设可知x1 x2 xn1为AX 0的解,又因为R(A)n1,所以AX 0的基础解为所含向量个数为n(n1)1-11-故y (1,1,1)T为AX 0的基础解系于是AX 0的通解为x cy(c为任意常数)10 10 x1 x2 0k4、的互解为x k3 01x x 034 010110 k1k12102 0()即1201k30101k40110 1210 12100110A 1201001101010000R(A)3 4 方程组()有非零解显然k1 1,k2 k3 k41满足方程()所以 k(1,1,1,1)是所求非零的公共解11(答案略)由题设知,方程组AX 0的基础解系含一个解向量T1 223122304 0T可见y0(1,2,1,0)是方程组AX 0的基础解系由AX 知,1x12x23x34x41234又1=22-3,知(22-3)x12x23x34x4(22-3)234即(2x1 x23)2(x1 x3)3(x41)4 0又2,3,4线性无关2x1 x2 3x1 x3 0,可见x1 x2 x3 x41为它的一个解,x 14从而y (1,1,1,1)为AX 的一个特解。T-12-故AX 的通解为y y ky0()假设y,1,2,nr,线性相关1,2,nr,线性无关y纯由向量组1,2,nr,线性表示从而y是方程组AX 0的解与已知矛盾y,1,2,nr,线性无关 knr(ynr)0()设ky k1(y 1)(k k1又knr)yk11knrnr 0y,1,2,nr,线性无关k k1knr 0k 01k2 0knrnr 0从而k k1 k2 knr 0故y,y1,ynr线性无关设y是AX 的一个解,1,2,由知R(y,1,2,又,nr是AX 0的基础解系,nr)nr 1,nr线性表示AX 的任一解y都可由向量组y,1,AX 的解向量组所含向量个数 R(y,1,2,设y0是AX 的一个特解1,2,nr)nr 1,nr是AX 0的一个基础解系tnrnr则AX 的任意解X y0t11即X y0t1y0t2y0t1y0t2y0tnry0tnrnrtnry0t11-13-(1t1tnr)y0t1(y01)t2(y02),y0nr ynr1tnr(y0nr)令y0 y1,y01 y2,显然y1,y2,ynr1是AX 的nr 1个线性无关的解.knr1ynr1其中k1k2knr11则X k1y1k2y2-14-习题五习题五1(答案略)2、设是A1的属于特征值A11的特征向量,则1,即A(E A)0,解此方程组得k1 2或k 13、设是A的特征值,是A的属于特征值的特征向量,则AA2 E,A22,即(1)02故1,即1或 14、B(A)1A A13E 3A13E219(1)33 6,(2)33,221(3)33 4.319A 3E的特征值为6,4.225.由题设知 4为A的特征值。故B 4E A 0,于是x 4又6.7.A y 9BABA A1ABA A1(AB)AABAB存在可逆矩阵P,使B P1AP.2121于是B P A P P A P B故 B 是幂等矩阵.108.令P (1,2,3),1102111依题设P AP A PP0123220A50(PP1)(PP1)(PP1)-15-5421501452 P P92289.由,2 1.E A 0,得11(二重)可见方程(1E A)x 0的基础解系含 2 个解向量,从而R(1E A)R(E A)10 101 10又E A x0y x0 x y101100 x y 010(答案略)TTT11.(1)设1(2,1,1),2(1,1,1),3(0,1,1).11原矩阵不是正交矩阵.010010 101101121200001212121200001212(2)111200令1(1111T,0,0)T,2(0,0,),22221111T,0,0)T,4(0,0,).22223(iTj1,i j(i,j 1,2,3,4)所以原矩阵为正交矩阵.0,i j12(答案略)T13.设(x1,x2,x3)为与1正交的向量.则1 0,即x2 x3 0,此方程组的通解为-16-1 0 X k10 k21 01 TT(1)A 的属于特征值1的特征向量为2(1,0,0),3(0,1,1).111(2)记P (1,2,3),则P AP A PAP110(P E)0100A PP11001010又P 1011010011 11 22020100P121001012121021200 0110.-17-