《系统工程》第四版习题解答.pdf
系统工程第四版习题解答第三章第三章 系统模型与模型化系统模型与模型化21.给定描述系统基本结构的有向图,如图3-16a、b 所示。要求:(1)写出系统要素集合S及S上的二元关系集合Rb。(2)建立邻接矩阵A、可达矩阵M及缩减矩阵M。解:(2)3-16a:规范方法:00A 0001001110101000010,M 00000000111001111110110,M M010111区域划分Si12345R(Si)1,2,3,4,52,3,43,442,3,4,5A(Si)11,2,51,2,3,51,2,3,4,51,5C(Si)12345E(Si)4所以系统无法划分为两个或两个以上相互独立的区域,即(S)P 1,2,3,4,5。1M(P)2345级位划分110000234511111110011000101111要素集合Si123R(Si)1,2,3,4,52,3,43,4A(Si)11,2,51,2,3,5C(Si)123E(Si)(P2)L14P L01/234542,3,4,51,2,3,52,332,3,51,2,522,51,5511,2,3,4,51,511,2,51,2,3,51,511,2,51,511,5145123512515143251P L0 L11235125151L23P L0 L1 L2L32P L0 L1 L2 L3P L0 L1 L2 L3 L4L45L51(P)L1,L2,L3,L4,L54,3,2,5,1L1M(L)L2L3432411111411000L1A M(L)I L2L3325100001000110011101111325100001000110001100011432401000325100000000100001000010L45L51提取骨架矩阵L1M(L)L2L3432L45L51L45L51绘制多级递阶有向图2/2343251实用方法:第一级第二级第三级第四级第五级1缩减矩阵M M 2345110000234511111110011000101111L1M(L)L2L3432L45L51411111325100001000110011101111432513-16b:规范方法:第一级第二级第三级第四级第五级3/23000A 010010101110100010000100000M,100010101111000000000000111101000101111001区域划分Si123456R(Si)1,2,3,4,5,62,4,632,4,61,2,3,4,5,66A(Si)1,51,2,4,51,3,51,2,4,51,51,2,4,5,6C(Si)1,52,432,41,56E(Si)36A(S3)A(S6)1,3,51,2,4,5,61,5所以系统无法划分为两个或两个以上相互独立的区域,即(S)P 1,2,3,4,5,6。12M(P)3456级位划分110001023456111111010101000101011111100001要素集合Si123456124515R(Si)1,2,3,4,5,62,4,632,4,61,2,3,4,5,661,2,4,52,42,41,2,4,51,51,5A(Si)1,51,2,4,51,3,51,2,4,51,51,2,4,5,61,51,2,4,51,2,4,51,51,51,54/23C(Si)1,52,432,41,561,52,42,41,51,51,5E(Si)362415(P2)P L0L13,6P L0 L1L22,4P L0 L1 L2L31,5(P)L1,L2,L33,6,2,4,1,536M(L)2L241L35L131000116241500000100001110011100111111111136211001000100110011提取骨架矩阵3621L13M(L)6L22L311001000L13,M(L)1006L22110L311113621L13A M(L)I 6L22L31绘制多级递阶有向图00010000001000103624第一级第二级第三级1实用方法:51缩减矩阵M 236110002361111010100015/233M(L)62131001621000100,110011绘制多级递阶有向图:3624第一级第二级第三级1522.请依据图 317 建立可达矩阵,并用简化方法建立其递阶结构模型。解:VVVVVVVVVVVV(V)V(V)AAA(A)AVAAVAP1P2P3P4P5P6P7P8P96/23123M 45678911010101009812010001009111111111300100100401010100500010000600011100700000100811111110001000191111111114M(L)6235781462357000000001000000011000000101000001001000010101000110001001111001011111101绘制多级递阶有向图:98164第一级第二级第三级352第四级第五级77/2323.已知下面的系统可适矩阵,分别用规范方法与实用方法建立其递阶结构模型。1112030(1)405060702010100030010010400010005101011160010010171110203104(2)0050060070180234567810100001000000111000010100001011000101111110110110000001解:(1)规范方法:区域划分Si1234567R(Si)1,5,723,5,62,453,5,65,7A(Si)12,43,641,3,5,6,73,61,7C(Si)123,6453,67E(Si)25A(S2)A(S5)2,41,3,5,6,7所以系统可划分为两个相互独立的区域,即(S)P1,3,5,6,7。1,P22,4,221P1 411 0M(P)30P2506070级位划分要素集合401000001001000030001010500111116000101070010001Si244R(Si)22,44A(Si)2,444C(Si)244E(Si)24(P1)L12L24P1 L0P1 L0 L18/23(P1)L1,L22,4要素集合Si1356713671R(Si)1,5,73,5,653,5,65,71,73,63,671A(Si)13,61,3,5,6,73,61,713,63,61,71C(Si)13,653,6713,63,671E(Si)53671(P2)P2 L0L15P1 L0 L1L23,6,7P1 L0 L1 L2L31(P2)L1,L2,L35,3,6,7,1L1L2L1L2L3221415030607010453671000000100000010000011100011100010010010011M(L)提取骨架矩阵M(L)L1L2L1L2L32214150306070104010000050011111300011006000110070000011120210410,M(L)5003007001014537100000100000100001100010100001122041A M(L)I 50307010453710000000000000000100001000000109/23绘制多级递阶有向图2475316第一级第二级第三级(2)规范方法:区域划分Si12345678R(Si)1,2,421,2,3,42,42,4,52,4,5,6,7,82,4,5,7,88A(Si)1,31,2,3,4,5,6,731,3,4,5,6,75,6,766,76,7,8C(Si)12345678E(Si)28A(S2)A(S8)1,2,3,4,5,6,76,7,86,7所以系统不能划分为两个或两个以上相互独立的区域,即(S)P 1,2,3,4,5,6,7,8。1112031M(P)4050607080级位划分要素集合234567810100001000000111000010100001011000101111110110110000001Si1234R(Si)A(Si)10/23C(Si)E(Si)(P2)P L0L12,856781345671356736761,41,3,444,54,5,6,74,5,711,355,6,75,736,7761,331,3,4,5,6,75,6,766,71,335,6,766,7366,76134567135673676415376P1 L0 L1L24P1 L0 L1 L2L31,5P1 L0 L1 L2 L3P1 L0 L1L43,7 L2 L3 L4L56(P)L1,L2,L3,L4,L52,8,4,1,5,3,7,62L121L180L241L 1M(L)31L351L431L471L561提取骨架矩阵80100060000001101001101010110101140011110001050000130000070000011/232L121L180L241L 1M(L)30L350L430L470L5608415376000000010000000100000011000001010000010100100101000000118415376000000000000000000000010000001000000010000100100000000102L120L180L241A M(L)I L310L350L430L470L560绘制多级递阶有向图2413576(1)实用方法:8第一级第二级第三级第四级第五级12/2312345110001201000缩减矩阵M 30010140101050000170000125347121000005010000M(L)301100041001007010010101001171000012475316第一级第二级第三级(2)实用方法:1112031M 4050607080211111822100084100M(L)1151031101111171101101160000001130010041011150000160000070000084153760000000100000001000000110000010100001101001101010110101113/2324135768第一级第二级第三级第四级第五级14/23第四章第四章 系统动力学系统动力学9.已知如下的部分 DYNAMO 方程:请画出对应的 SD 流(程)图。MTMHMCTMEMLTTSTTTEC10.在校本科生S教师TSRTSRSTRSTTRLS.K=S.J+SR.JK*DTNS=10000RSR.KL=T.K*TSRCTSR=1LT.K=T.J+TR.JK*DTNT=1500RTR.KL=S.K*STRCSTR=0.0515/2311.TIMEST010,0001,500111,5002,000213,500316,075419,3254,053523,3785,0202,5753,250SNSSDPNPSPSESXISR12.(1)购房系数GFX+购房数量GFL+购到新房的户数XFS未住新房户数-WFS+需住房总户数XQS+家具销售量XSL未买家具新房户数WMS家具销售系数XSX+已买家具户数YMS16/23购房系数GFX+购房数量GFL+购到新房的户数XFS未住新房户数-WFS+需住房总户数XQS+未买家具新房户数WMS-+家具销售量XSL家具销售系数XSX(2)+已买家具户数YMSXFSGFLGFXWFSWMSXQSXSXXSLYMS15.17/23库存量生产速率销售率平滑价格价格18/23第五章第五章 系统评价方法系统评价方法12.解:19/23第六章第六章 决策分析决策分析补充题补充题 1 1 某商店拟经营一种高科技产品,若市场畅销,可以获利1 万 5 千元;若市场滞销,将亏损 5 千元;若不经营,则不亏不赚。根据收集的市场销售资料,该产品畅销的概率为0.8,滞销的概率为0.2。为了降低风险,可以聘请某咨询公司进行市场调查和分析,该咨询公司对该产品畅销预测的准确率为0.95,滞销预测的准确率为 0.90。画出该决策问题的决策树,并进行决策分析。解:设市场畅销为1,市场滞销为2;设产品预测畅销为x1,产品预测滞销为x2,则由已知条件:P(1)0.8,P(2)0.2,P(x11)0.95,P(x22)0.90有:P(x21)0.05,P(x12)0.10P(x11)0.76,P(x21)0.04,P(x12)0.02,P(x22)0.18P(x1)0.78,P(x2)0.22P(1x1)0.9744,P(2x1)0.0256,P(1x2)0.1818,P(2x2)0.818220/23畅销畅销0.97440.97441.451.451.451.453 3预测畅预测畅销销0.780.781.131.132 20.1360.136预测滞预测滞销销0.220.220 04 4不经营不经营经营经营7 7滞销滞销0.81820.8182畅销畅销0.18180.1818不经营不经营经营经营6 6滞销滞销0.02560.02561.51.50.50.50 01.51.5预测预测1 11.131.131 10.50.50 0不预测不预测畅销畅销0.80.81.11.11.11.15 5不经营不经营经营经营8 8滞销滞销0.20.20.50.50 01.51.5贝叶斯行动:如果市场预测结果为畅销,应该选择经营该高科技产品;若市场预测结果为滞销,则不经营。由决策树可知,咨询公司提供信息的价值为 1.13-1.1=0.03 万元,因此要价超过300 元不应聘请。补充题补充题 2 2 某公司拟改变产品的包装,改变包装后产品的销路不能确定,公司经理的估计是:概率 P销路与收益的关系如下表:销路差 10.2销路一般 20.3销路好 30.521/23改变包装包装不变1-40020036000为了对销路的估计更有把握,公司先在某个地区试销改变了包装的产品。根据以往的经验,试销的结果与产品在将来的实际销路中有如下关系(x1、x2、x3分别为试销为差、一般和好的事件):P(xji)123x10.80.20 x20.20.40.1x300.40.9画出该决策问题的决策树;确定与各种试销结果相应的贝叶斯行动;分析试销费用与是否试销的关系。解:由已知条件有下表:P(xji)123x10.160.0600.22x20.040.120.050.21x300.120.450.57Pi)0.20.30.51.00P(xj)进一步有,P(ixj)123决策树为:x10.72730.27270.0000 x20.19050.57140.2381x30.00000.21050.789522/2329.0929.09改变包装改变包装0 03 3销路差销路差0.220.22不改变包装不改变包装7 7销路差销路差0.72730.7273销路一般销路一般0.27270.2727销路好销路好0.00000.000040400 06006000 0135.24135.24改变包装改变包装298.4298.42 2销路一般销路一般0.210.21135.24135.244 4不改变包装不改变包装试销试销298.4298.41 1销路好销路好0.570.57改变包装改变包装473.68473.685 5不试销不试销不改变包装不改变包装473.68473.689 98 8销路差销路差0.19050.1905销路一般销路一般0.57140.5714销路好销路好0.23810.238140400 06006000 0销路差销路差0.00000.0000销路一般销路一般0.21050.2105销路好销路好0.78950.789540400 06006000 0292292改变包装改变包装2922926 6不改变包装不改变包装1010销路差销路差0.20.2销路一般销路一般0.30.3销路好销路好0.50.540400 06006000 0贝叶斯行动:如果试销结果为差,则不改变包装;如果试销结果为一般,则改变包装;如果试销结果为好,则改变包装。由决策树可知,试销的价值为(抽样信息的价值)298.4-292=6.4 万元,因此如果试销费用大于 6.4 万元则不试销,如果试销费用小于 6.4 万元时试销。23/23